Венерические заболевания

За что была присуждена нобелевская премия по медицине. Моноклоны против рака

В Стокгольме прошла церемония объявления лауреатов Нобелевской премии по физиологии и медицине. Ими стали Джеймс Эллисон (James P. Allison) и Таску Хондзё (Tasuku Honjo) за открытие терапии рака путем снятия ограничения иммунного ответа.

Джеймс Эллисон, профессор Онкологического центра им. М.Д. Андерсона Техасского университета, выделил белок CTLA-4 . Его молекулы находятся на поверхности Т-клеток и способны связываться с белками CD80 и CD86 на поверхности другого компонента иммунной системы - антигенпрезентирующих клеток . Когда такое связывание происходит, антигенпрезентирующие клетки, показывающие всем остальным компонентам иммунной системы, на что реагировать, инактивируются - перестают подавать сигналы. В таком случае антиген - «знак» того объекта, на который должна была быть нацелена атака, - не вызывает активации иммунного ответа.

Профессор Киотского университета Таску Хондзё обнаружил и охарактеризовал несколько интерлейкинов, а также белок PD-1 . Это рецептор, расположенный на поверхности Т-клеток. Связываясь с определенными молекулами, в частности PD-L1 на поверхности клеток опухолей, он тормозит атаку Т-лимфоцитов на клетки, несущие на себе эти самые молекулы.

Благодаря открытиям Эллисона и Хондзё стала возможной терапия рака ингибиторами контрольных точек иммунного ответа. Контрольные точки иммунного ответа - это молекулы, защищающие клетки организма от атаки со стороны собственной иммунной системы, в первую очередь от Т-лимфоцитов, т. е. ограничивающие иммунную реакцию на них. За счет этих контрольных точек компоненты раковых опухолей «прячутся» от Т-клеток. Ингибиторы контрольных точек иммунного ответа снижают активность PD-1, CTLA-4 и подобных молекул и тем самым «разрешают» Т-лимфоцитам атаковать опухоли.

«Открытие мембранных белков CTLA4 и PD1 в конце 1990-х годов позволило разработать принципиально новые препараты для лечения рака. Эти белки, часто называемые иммунными чекпоинтами, позволяют раковой опухоли успешно обманывать клетки иммунной системы. С помощью препаратов, которые подавляют активность CTLA4 и PD1, уже научились бороться с весьма агрессивными видами опухолей легких, почек, а также меланомой. Лекарства ипилимумаб и ниволумаб уже зарегистрированы Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США (Food and Drug Administration, FDA) в качестве второй рекомендуемой линии терапии. Таким образом, Нобелевская премия для ученых, открывших новое направление в лечение рака, весьма ожидаема и крайне заслужена», - рассказал «Чердаку» Андрей Гаража , биоинформатик, сооснователь и директор стартапа Oncobox , занимающегося разработкой решений для таргетной терапии раковых заболеваний, эксперт акселератора AngelTurbo.

Нобелевский комитет завершил голосование в 11 часов утра по Москве. Генеральный секретарь Нобелевского комитета Томас Перлманн (Thomas Perlmann) оповестил новых лауреатов о номинациях по телефону, а в 12:30 по Москве их имена стали известны и широкой общественности.

Интересно, что агентство Thomson Reuters, каждый год составляющее на основе цитирования научных статей списки вероятных кандидатов на получение Нобелевской премии (и редко попадающее в цель), дало довольно точный прогноз в отношении Хондзё и Эллисона. Они оказались в числе претендентов на награду в 2016 году . Всего через два года прогноз сбылся.

Нобелевская премия по физиологии и медицине - высшая награда за научные достижения в области физиологии и медицины - ежегодно присуждается Шведской королевской академией наук в Стокгольме. Она была учреждена в соответствии с завещанием, написанным в 1895 году шведским химиком Альфредом Нобелем. Каждый лауреат получает медаль, диплом и денежное вознаграждение. Их традиционно вручают на ежегодной церемонии в Стокгольме 10 декабря - в годовщину смерти Нобеля.

Первую Нобелевскую премию по физиологии и медицине вручили в 1901 году Эмилю фон Берингу «за работу над сывороточной терапией, прежде всего за ее применение в лечении дифтерии, что открыло новые пути в медицинской науке и дало врачам победоносное оружие против болезни и смерти». С тех пор лауреатами премии стали 214 человек.

В прошлом, 2017 году, самую престижную научную премию Джеффри Холл (Jeffrey C. Hall), Майкл Розбаш (Michael Rosbash) и Майкл Янг (Michael W. Young) за открытие молекулярных механизмов циркадных ритмов - периодического изменения активности клеток, тканей и органов, проходящего полный цикл приблизительно за 24 часа.

В 2018 году лауреатами Нобелевской премии по физиологии и медицине стали двое ученых с разных концов света - Джеймс Эллисон из США и Тасуку Хондзё из Японии, - независимо открывшие и изучавшие один и тот же феномен. Они обнаружили два разных чекпоинта - механизма, с помощью которых организм подавляет активность Т-лимфоцитов, иммунных клеток-убийц. Если заблокировать эти механизмы, то Т-лимфоциты «выходят на свободу» и отправляются на битву с раковыми клетками. Это называют иммунотерапией рака, и она уже несколько лет применяется в клиниках.

Нобелевский комитет любит иммунологов: по меньшей мере каждая десятая премия по физиологии и медицине вручается за теоретические иммунологические работы. В этом же году речь зашла о практических достижениях. Нобелевские лауреаты 2018 года отмечены не столько за теоретические открытия, сколько за последствия этих открытий, которые уже шесть лет помогают онкобольным в борьбе с опухолями.

Общий принцип взаимодействия иммунной системы с опухолями выглядит следующим образом. В результате мутаций в клетках опухоли образуются белки, отличающиеся от «нормальных», к которым организм привык. Поэтому Т-клетки реагируют на них как на чужеродные объекты. В этом им помогают дендритные клетки - клетки-шпионы, которые ползают по тканям организма (за их открытие, кстати, присудили Нобелевскую премию в 2011 году). Они поглощают все проплывающие мимо белки, расщепляют их и выставляют получившиеся кусочки на свою поверхность в составе белкового комплекса MHC II (главный комплекс гистосовместимости , подробнее см.: Кобылы определяют, беременеть или нет, по главному комплексу гистосовместимости... соседа , «Элементы», 15.01.2018). С таким багажом дендритные клетки отправляются в ближайший лимфатический узел, где показывают (презентируют) эти кусочки пойманных белков Т-лимфоцитам. Если Т-киллер (цитотоксический лимфоцит, или лимфоцит-убийца) узнает эти белки-антигены своим рецептором, то он активируется - начинает размножаться, образуя клоны. Дальше клетки клона разбегаются по организму в поисках клеток-мишеней. На поверхности каждой клетки организма есть белковые комплексы MHC I, в которых висят кусочки внутриклеточных белков. Т-киллер ищет молекулу MHC I с антигеном-мишенью, который он может распознать своим рецептором. И как только распознавание произошло, Т-киллер убивает клетку-мишень, проделывая дырки в ее мембране и запуская в ней апоптоз (программу гибели).

Но этот механизм не всегда работает эффективно. Опухоль - это гетерогенная система клеток, которые используют самые разные способы ускользнуть от иммунной системы (об одном из недавно открытых таких способов читайте в новости Раковые клетки повышают свое разнообразие, сливаясь с иммунными клетками , «Элементы», 14.09.2018). Некоторые опухолевые клетки скрывают белки MHC со своей поверхности, другие уничтожают дефектные белки, третьи выделяют вещества, подавляющие работу иммунитета. И чем «злее» опухоль, тем меньше шансов у иммунной системы с ней справиться.

Классические методы борьбы с опухолью предполагают разные способы убийства ее клеток. Но как отличить опухолевые клетки от здоровых? Обычно используют критерии «активное деление» (раковые клетки делятся гораздо интенсивнее большинства здоровых клеток организма, и на это нацелена лучевая терапия , повреждающая ДНК и препятствующая делению) или «устойчивость к апоптозу» (с этим помогает бороться химиотерапия). При таком лечении страдают многие здоровые клетки, например стволовые, и не затрагиваются малоактивные раковые клетки, например спящие (см.: , «Элементы», 10.06.2016). Поэтому сейчас часто делают ставку на иммунотерапию, то есть активацию собственного иммунитета больного, так как иммунная система лучше, чем внешние лекарства, отличает опухолевую клетку от здоровой. Активировать иммунную систему можно самыми разными способами. Например, можно забрать кусочек опухоли, выработать антитела к ее белкам и ввести их в организм, чтобы иммунная система лучше «видела» опухоль. Или же забрать иммунные клетки и «натаскать» их на распознавание специфических белков. Но Нобелевскую премию в этом году вручают за совсем другой механизм - за снятие блокировки с Т-киллерных клеток.

Когда эта история только начиналась, никто не думал об иммунотерапии. Ученые пытались разгадать принцип взаимодействия Т-клеток с дендритными клетками. При ближайшем рассмотрении оказывается, что в их «общении» участвуют не только MHC II c белком-антигеном и рецептор Т-клетки. Рядом с ними на поверхности клеток расположены и другие молекулы, которые тоже участвуют во взаимодействии. Вся эта конструкция - множество белков на мембранах, которые соединяются друг с другом при встрече двух клеток, - называется иммунным синапсом (см. Immunological synapse). В состав этого синапса входят, например, костимулирующие молекулы (см. Co-stimulation) - те самые, которые посылают сигнал Т-киллерам активироваться и отправляться на поиски врага. Их обнаружили первыми: это рецептор CD28 на поверхности Т-клетки и его лиганд В7 (CD80) на поверхности дендритной-клетки (рис. 4).

Джеймс Эллисон и Тасуку Хондзё независимо обнаружили еще две возможные составляющие иммунного синапса - две ингибирующие молекулы. Эллисон занимался открытой в 1987 году молекулой CTLA-4 (cytotoxic T-lymphocyte antigen-4, см.: J.-F. Brunet et al., 1987. A new member of the immunoglobulin superfamily - CTLA-4). Изначально считалось, что это еще один костимулятор, потому что она появлялась только на активированных Т-клетках. Заслуга Эллисона в том, что он предположил, что всё наоборот: CTLA-4 появляется на активированных клетках специально, чтобы их можно было остановить! (M. F. Krummel, J. P. Allison, 1995. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation). Дальше оказалось, что CTLA-4 похожа по структуре на CD28 и тоже может связываться с B7 на поверхности дендритных клеток, причем даже сильнее, чем CD28. То есть на каждой активированной Т-клетке есть ингибирующая молекула, которая конкурирует с активирующей молекулой за прием сигнала. А поскольку в состав иммунного синапса входит множество молекул, то результат определяется соотношением сигналов - тем, сколько молекул CD28 и CTLA-4 смогли связаться с B7. В зависимости от этого Т-клетка либо продолжает работу, либо замирает и не может никого атаковать.

Тасуку Хондзё обнаружил на поверхности Т-клеток другую молекулу - PD-1 (ее название - сокращение от programmed death), которая связывается с лигандом PD-L1 на поверхности дендритных клеток (Y. Ishida et al., 1992. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death). Оказалось, что мыши, нокаутные по гену PD-1 (лишенные соответствующего белка), заболевают чем-то похожим на системную красную волчанку. Это аутоиммунное заболевание, то есть состояние, когда иммунные клетки атакуют нормальные молекулы организма. Поэтому Хондзё заключил, что PD-1 тоже работает как блокатор, сдерживая аутоиммунную агрессию (рис. 5). Это еще одно проявление важного биологического принципа: каждый раз, когда запускается какой-либо физиологический процесс, параллельно запускается противоположный ему (например, свертывающая и противосвертывающая системы крови), чтобы избежать «перевыполнения плана», которое может оказаться губительным для организма.

Обе блокирующие молекулы - CTLA-4 и PD-1 - и соответствующие им сигнальные пути назвали иммунными чекпоинтами (от англ. checkpoint - контрольная точка, см. Immune checkpoint). По всей видимости, это аналогия с чекпоинтами клеточного цикла (см. Cell cycle checkpoint) - моментами, в которые клетка «принимает решение», может ли она продолжать делиться дальше или какие-то ее компоненты существенно повреждены.

Но на этом история не закончилась. Оба ученых решили найти применение новооткрытым молекулам. Их идея состояла в том, что можно активировать иммунные клетки, если заблокировать блокаторы. Правда, побочным эффектом неизбежно будут аутоиммунные реакции (как и происходит сейчас у пациентов, которых лечат ингибиторами чекпоинтов), зато это поможет победить опухоль. Блокировать блокаторы ученые предложили с помощью антител: связываясь с CTLA-4 и PD-1, они механически их закрывают и мешают взаимодействовать с B7 и PD-L1, при этом Т-клетка не получает ингибирующих сигналов (рис. 6).

Прошло не меньше 15 лет между открытиями чекпоинтов и одобрением лекарств на основе их ингибиторов. На данный момент применяют уже шесть таких препаратов: один блокатор CTLA-4 и пять блокаторов PD-1. Почему блокаторы PD-1 оказались удачнее? Дело в том, что клетки многих опухолей тоже несут на своей поверхности PD-L1, чтобы блокировать активность Т-клеток. Таким образом, CTLA-4 активирует Т-киллеры в целом, а PD-L1 более специфично действуют на опухоль. И осложнений в случае блокаторов PD-1 возникает несколько меньше.

Современные методы иммунотерапии пока, увы, не являются панацеей. Во-первых, ингибиторы чекпоинтов всё равно не обеспечивают стопроцентной выживаемости пациентов. Во-вторых, они действуют не на все опухоли. В-третьих, их эффективность зависит от генотипа пациента: чем более разнообразны его молекулы MHC, тем выше шанс на успех (о разнообразии белков MHC см.: Разнообразие белков гистосовместимости повышает репродуктивный успех у самцов камышовок и снижает у самок , «Элементы», 29.08.2018). Тем не менее получилась красивая история о том, как теоретическое открытие сначала меняет наши представления о взаимодействии иммунных клеток, а затем рождает лекарства, которые можно применять в клинике.

А нобелевским лауреатам есть над чем работать дальше. Точные механизмы работы ингибиторов чекпоинтов всё еще не известны до конца. Например, в случае CTLA-4 так и непонятно, с какими именно клетками взаимодействует лекарство-блокатор: с самими Т-киллерами, или с дендритными-клетками, или вообще с Т-регуляторными клетками - популяцией Т-лимфоцитов, отвечающей за подавление иммунного ответа. Поэтому эта история, на самом деле, еще далека от завершения.

Полина Лосева

Профессору Токийского технологического института Ёсинори Осуми. Японский ученый удостоился ее за свои фундаментальные работы, объяснившие миру, как происходит аутофагия - ключевой процесс переработки и реутилизации клеточных компонентов.

Благодаря работам Ёсинори Осуми другие ученые получили инструменты для изучения аутофагии не только у дрожжей, но и у других живых существ, включая человека. В ходе дальнейших исследований было установлено, что аутофагия - это консервативный процесс, и у людей он происходит приблизительно так же. При помощи аутофагии клетки нашего тела получают недостающие энергетические и строительные ресурсы, мобилизуя внутренние резервы. Аутофагия задействована при удалении поврежденных клеточных структур, что важно для поддержания нормальной работы клетки. Также этот процесс - один из механизмов программируемой клеточной смерти. Нарушения аутофагии могут лежать в основе рака и болезни Паркинсона. Кроме этого, аутофагия направлена на борьбу с внутриклеточными инфекционными агентами, например, с возбудителем туберкулеза. Возможно, благодаря тому, что когда-то дрожжи открыли нам секрет аутофагии, мы получим лекарство от этих и других заболеваний.

Нобелевской премии по физиологии и медицине. Ее обладателями стала группа ученых из США. Майкл Янг, Джеффри Холл и Майкл Росбаш получили награду за открытие молекулярных механизмов, контролирующих циркадный ритм.

Согласно завещанию Альфреда Нобеля, премией награждается тот, "кто сделает важное открытие" в этой области. Редакция ТАСС-ДОСЬЕ подготовила материал о порядке присуждения этой премии и ее лауреатах.

Присуждение премии и выдвижение кандидатов

За присуждение премии отвечает Нобелевская ассамблея Каролинского института, расположенного в Стокгольме. Ассамблея состоит из 50 профессоров института. Ее рабочий орган - Нобелевский комитет. В него входят пять человек, избираемых ассамблеей из своих членов на три года. Ассамблея собирается несколько раз в год для обсуждения претендентов, отобранных комитетом, а в первый понедельник октября большинством голосов избирает лауреата.

Правом номинировать на премию обладают ученые разных стран, в том числе члены Нобелевской ассамблеи Каролинского института и обладатели Нобелевских премий по физиологии и медицине и по химии, которые получили специальные приглашения от Нобелевского комитета. Предлагать кандидатов можно с сентября до 31 января следующего года. На премию в 2017 года претендует 361 человек.

Лауреаты

Премия присуждается с 1901 года. Первым лауреатом стал немецкий врач, микробиолог и иммунолог Эмиль Адольф фон Беринг, разработавший способ иммунизации против дифтерии. В 1902 году награду получил изучавший малярию Роналд Росс (Великобритания); в 1905 году - исследовавший возбудителей туберкулеза Роберт Кох (Германия); в 1923 году - открывшие инсулин Фредерик Бантинг (Канада) и Джон Маклеод (Великобритания); в 1924 году - основоположник электрокардиографии Виллем Эйнтховен (Голландия); в 2003 году - разработавшие метод магнитно-резонансной томографии Пол Лотербур (США) и Питер Мэнсфилд (Великобритания).

По оценке Нобелевского комитета Каролинского института, до сих пор самой известной остается премия 1945 году, присужденная Александеру Флемингу, Эрнесту Чейну и Говарду Флори (Великобритания), открывшим пенициллин. Некоторые открытия с течением времени утратили свое значение. Среди них метод лоботомии, применявшийся при лечении психических заболеваний. За его разработку в 1949 году премию получил португалец Антониу Эгаш-Мониш.

В 2016 году премия была присуждена японскому биологу Ёсинори Осуми "за открытие механизма аутофагии" (процесс переработки клеткой ненужного содержимого в ней).

Согласно данным нобелевского сайта, на сегодняшний день в списке лауреатов премии 211 человек, в том числе 12 женщин. Среди лауреатов два наших соотечественника: физиолог Иван Павлов (1904 год; за работы в области физиологии пищеварения) и биолог и патолог Илья Мечников (1908 год; за исследование иммунитета).

Статистика

В 1901-2016 годах премия по физиологии и медицине присуждалась 107 раз (в 1915-1918, 1921, 1925, 1940-1942 годах Нобелевская ассамблея Каролинского института не смогла выбрать лауреата). 32 раза премия была поделена между двумя лауреатами и 36 - между тремя. Средний возраст лауреатов 58 лет. Самым молодым является канадец Фредерик Бантинг, получивший премию в 1923 году в возрасте 32 лет, самым пожилым - 87-летний американец Фрэнсис Пейтон Роус (1966 год).

Нобелевская премия по медицине в 2018 году присуждена ученым Джеймсу Аллисону и Тасуко Хонджо, которые разработали новые методы иммунотерапии рака, сообщает Нобелевский комитет при Каролинском медицинском институте.

«Премией 2018 года в области физиологии и медицины награждаются Джеймс Эллисон и Тасуку Хондзt за их открытия терапии рака путем ингибирования отрицательной иммунной регуляции», – приводит ТАСС заявление представитель комитета на церемонии объявления лауреатов.

Ученые разработали методику лечения рака посредством замедления действия тормозных механизмов иммунной системы. Эллисон изучал белок, способный замедлять работу иммунной системы, и обнаружил возможность активизировать систему путем нейтрализации белка. Работавший параллельно с ним Хондзе открыл наличие протеина в иммунных клетках.

Ученые создали основу для новых подходов в лечении раковых заболеваний, которые станут новой вехой в борьбе с опухолями, полагает Нобелевский комитет.

Тасуку Хондзе родился в 1942 году в Киото, в 1966 году закончил медицинский факультет Киотского университета, который считается одним из самых престижных в Японии. После получения докторской степени несколько лет работал в качестве приглашенного специалиста на факультете эмбриологии в Институте Карнеги в Вашингтоне. С 1988 года – профессор Киотского университета.

Джеймс Эллисон родился в 1948 году в США. Является профессором Техасского университета и заведует кафедрой иммунологии в Онкологическом центре М.Д. Андерсона в Хьюстоне (Техас).

По правилам фонда, с именами всех кандидатов, представленных к награде в 2018 году, можно будет ознакомиться лишь через 50 лет. Предугадать их почти невозможно, однако из года в год эксперты называют своих фаворитов, передает РИА «Новости» .

В пресс-службе Нобелевского фонда сообщили также, что во вторник, 2 октября, и в среду, 3 октября, Нобелевский комитет Королевской шведской академии наук назовет имена призеров в области физики и химии.

Нобелевского лауреата по литературе озвучат в 2019 году из-за , которая отвечает за эту работу.

В пятницу, 5 октября, в Осло Норвежский нобелевский комитет назовет обладателя или обладателей награды за работу по укреплению мира. В этот раз в списке 329 кандидатов, из которых 112 – общественные и международные организации.

Неделя присуждения престижной премии завершится 8 октября в Стокгольме, где в Королевской шведской академии наук назовут призера в области экономики.

Сумма каждой из Нобелевских премий в 2018 году составляет 9 млн шведских крон – это около 940 тыс. долларов США.

Работа над списками кандидатов ведется почти круглый год. Ежегодно в сентябре множество профессоров разных стран, а также академические учреждения и бывшие нобелевские лауреаты получают письма с приглашением принять участие в номинации кандидатов.

После, с февраля по октябрь, идет работа над присланными номинациями, составлением списка кандидатов и голосованием по выбору лауреатов.

Список кандидатов является секретным. Имена награжденных называют в начале октября.

Церемония вручения премий проходит в Стокгольме и Осло всегда 10 декабря – в день кончины основателя Альфреда Нобеля.

В 2017 году обладателями премии стали 11 человек, которые работают в США, Великобритании, Швейцарии, и одна организация – Международная кампания по запрещению ядерного оружия ICAN.

В минувшем году Нобелевская премия по экономике была присуждена американскому экономисту Ричарду Талеру за то, что он научил мир .

Среди медиков – лауреатов премии оказался норвежский ученый и врач, прибывший в Крым в составе крупной делегации. Он о присуждении премии при посещении международного детского центра «Артек».

Президент РАН Александр Сергеев , что Россию, как и СССР, обделяют Нобелевскими премиями, ситуация вокруг которых политизирована.