Микозы

Эмбрион. Врожденные пороки Количественные хромосомные аномалии

В основу статьи положены работы проф. Буэ.

Остановка развития зародыша в дальнейшем приводит к изгнанию плодного яйца, что проявляется в виде самопроизвольного выкидыша. Однако во многих случаях остановка развития происходит на очень ранних сроках и сам факт зачатия остается неизвестным для женщины. В большом проценте случаев такие выкидыши связаны с хромосомными аномалиями у зародыша.

Самопроизвольные выкидыши

Самопроизвольные выкидыши, определением которых служит "самопроизвольное прерывание беременности между сроком зачатия и сроком жизнеспособности плода", во многих случаях с большим трудом поддаются диагностике: большое число выкидышей происходит на очень ранних сроках: задержки месячных не происходит, или эта задержка настолько мала, что сама женщина не подозревает о беременности.

Клинические данные

Изгнание плодного яйца может произойти внезапно, или ему могут предшествовать клинические симптомы. Чаще всего угроза выкидыша проявляется кровянистыми выделениями и болями внизу живота, переходящими в схватки. Далее следуют изгнание плодного яйца и исчезновение признаков беременности.

Клиническое обследование может выявить несоответсвие между предполагаемым сроком беременности и размерами матки. Уровни гормонов в крови и моче могут быть резко снижены, указывая на отсутствие жизнеспособности зародыша. Ультразвуковое исследование позволяет уточнить диагноз, выявляя либо отсутствие зародыша ("пустое плодное яйцо"), либо отставание в развитии и отсутствие сердцебиения

Клинические проявления самопроизвольного выкидыша значительно варьируют. В одних случаях выкидыш проходит незамеченным, в других — сопровождается кровотечением и может потребовать выскабливания полости матки. Хронология симптоматики может косвенно указывать на причину самопроизвольного выкидыша: кровянистые выделения с ранних сроков беременности, остановка роста матки, исчезновение признаков беременности, "немой" период в течение 4-5 недель, а затем изгнание плодного яйца чаще всего свидетельствуют о хромосомных нарушениях зародыша, а соответствие срока развития зародыша сроку выкидыша говорит в пользу материнских причин невынашивания беременности.

Анатомические данные

Анализ материала самопроизвольных выкидышей, сбор которого был начат в начале двадцатого века в Институте Карнеги, позволил выявить огромный процент аномалий развития среди абортусов ранних сроков

В 1943 году Хертиг и Шелдон опубликовали результаты патологоанатомического исследования материала 1000 выкидышей на ранних сроках. Материнские причины невынашивания беременности были ими исключены в 617 случаев. Современные данные указывают на то, что мацерированные зародыши во внешне нормальных оболочках тоже могут быть связаны с хромосомными аномалиями, что в сумме составляет около 3/4 всех случаев данного исследования.

Морфологическое исследование 1000 абортусов (по Hertig и Sheldon, 1943)
Грубые патологические нарушения плодного яйца:
плодное яйцо без зародыша или с недифференцированным зародышем
489
Локальные аномалии зародышей 32
Аномалии плаценты 96 617
Плодное яйцо без грубых аномалий
с мацерированными зародышами 146
763
с немацерированными зародышами 74
Аномалии матки 64
Другие нарушения 99

Дальнейшие исследования Микамо и Миллера и Полланда позволили уточнить связь между сроком выкидыша и частотой нарушений развития зародыша. Оказалось, что чем меньше срок выкидыша, тем частота аномалий выше. В материалах выкидышей, происшедших до 5-й недели после зачатия макроскопические морфологические аномалии плодного яйца встречаются в 90% случаев, при сроке выкидыша от 5 до 7 недель после зачатия — в 60%, при сроке больше 7 недель после зачатия — менее, чем в 15—20%.

Важность значения остановки развития зародыша в ранних самопроизвольных выкидышах была показана прежде всего фундаментальными исследованиями Артура Хертига, который в 1959 г. опубликовал результаты исследования человеческих зародышей до 17 дней после зачатия. Это был плод его 25-летней работы.

У 210 женщин в возрасте до 40 лет, идущих на операцию гистерэктомии (удаления матки) дата операции была сопоставлена с датой овуляции (возможного зачатия). После операции матки подвергались самому тщательному гистологическому исследованию на предмет выявления возможной беременности малого срока. Из 210 женщин только 107 были оставлены в исследовании в связи с обнаружением признаков овуляции, и отсутствием грубых нарушений труб и яичников, препятствующих наступлению беременности. Было обнаружено 34 плодных яйца, из них 21 плодное яйцо было внешне нормальным, а 13 (38%) имело явные признаки аномалий, которые, по мнению Хертига, обязательно привели бы к выкидышу или на этапе имплантации или вскоре после имплантации. Поскольку в то время не было возможности проведения генетического исследования плодных яиц, причины нарушений развития зародышей оставались неизвестными.

При обследовании женщин с подтвержденной фертильностью (все пациентки имели по несколько детей) было обнаружено, что одно из трех плодных яиц имеет аномалии и подвергается выкидышу до появления признаков беременности.

Эпидемиологические и демографические данные

Нечеткая клиническая симптоматика ранних самопроизвольных выкидышей приводит к тому, что достаточно большой процент выкидышей на малых сроках проходит незамеченным женщинами.

В случае клинически подтвержденных беременностей около 15% всех беременностей заканчивается выкидышем. Большая часть самопроизвольных выкидышей (около 80%) происходит в первом триместре беременности. Однако если принять во внимание тот факт, что выкидыши часто случаются спустя 4-6 недель после остановки развития беременности, можно сказать, что с первым триместром связано более 90% всех самопроизвольных выкидышей.

Специальные демографические исследования позволили уточнить частоту внутриутробной смертности. Так, Френч и Бирман в 1953 — 1956 гг. регистрировали все беременности у женщин острова Канаи и показали, что из 1000 беременностей, диагностированных при сроке после 5 недель, 237 не увенчались рождением жизнеспособного ребенка.

Анализ результатов нескольких исследований позволил Леридону составить таблицу внутриутробной смертности, включающей в себя и неудачи оплодотворения (половой акт в оптимальные сроки — в течение суток после овуляции).

Полная таблица внутри утробной смертности (на 1000 яйцеклеток, подвергшихся риску оплодотворения) (по Leridon, 1973)
Недели после зачатия Остановка развития с последующим изгнанием Процент продолжающихся беременностей
16* 100
0 15 84
1 27 69
2 5,0 42
6 2,9 37
10 1,7 34,1
14 0,5 32,4
18 0,3 31,9
22 0,1 31,6
26 0,1 31,5
30 0,1 31,4
34 0,1 31,3
38 0,2 31,2
* — неудачи зачатия

Все эти данные указывают на огромную частоту самопроизвольных выкидышей и на важную роль нарушений развития плодного яйца в этой патологии.

Эти данные отражают общую частоту нарушений развития, не выделяя среди них конкретные экзо- и эндогенные факторы (иммунологические, инфекционные, физические, химические и т. д.).

Важно отметить, что независимо от причины повреждающего воздействия, при исследовании материала выкидышей обнаруживается очень большая частота генетический нарушений (хромосомных аберраций (на сегодня изучены лучше всего) и генных мутаций) и аномалий развития, как, например, дефекты развития нервной трубки.

Хромосомные аномалии, ответственные за остановку развития беременности

Цитогенетические исследования материала выкидышей позволили уточнить характер и частоту тех или иных хромосомных аномалий.

Общая частота

При оценке результатов больших серий анализов следует иметь в виду следующее. На результаты исследований подобного рода могут оказать значительное влияние следующие факторы: способ сбора материала, относительная частота более ранних и более поздних выкидышей, доля материала искусственных абортов в исследовании, часто не поддающаяся точной оценке, успех культивирования клеточных культур абортуса и хромосомного анализа материала, тонкие методы обработки мацерированного материала.

Общая оценка частоты хромосомных аберраций при невынашивании беременности составляет около 60%, а в первом триместре беременности — от 80 до 90%. Как будет показано ниже, анализ, основанный на стадийности развития зародыша, позволяет сделать гораздо более точные выводы.

Относительная частота

Практически все большие исследования хромосомных аберраций в материале выкидышей дали поразительно сходные результаты относительно характера нарушений. Количественные аномалии составляют 95% всех аберраций и распределяются следующим образом:

Количественные хромосомные аномалии

Различные типы количественных хромосомных аберраций могут возникать в результате:

  • сбоев мейотического деления : речь идет о случаях "нон-дисджанкшн" (неразделения) парных хромосом, что приводит к появлению либо трисомии, либо моносомии. Неразделение может происходить как во время первого, так и во время второго мейотического деления, и может касаться как яйцеклеток, так и сперматозоидов.
  • сбои, возникающие при оплодотворении: : случаи оплодотворения яйцеклетки двумя сперматозоидами (диспермия), в результате чего возникает триплоидный зародыш.
  • сбои, возникающие во время первых митотических делений : полная тетраплоидия возникает в случае, когда первое деление привело к удвоению хромосом, но неразделению цитоплазмы. Мозаики возникают в случае подобных сбоев на этапе последующих делений.

Моносомии

Моносомия X (45,X) представляет одну из часто встречающихся аномалий в материале самопроизвольных выкидышей. При рождении она соответствует синдрому Шерешевского-Тернера, и при рождении она встречается реже, чем другие количественные аномалии половых хромосом. Эта бросающаяся в глаза разница между относительно высокой частотой обнаружения лишних X-хромосом у новорожденных и относительно редким обнаружением моносомии X у новорожденных указывает на высокую частоту летальности моносомии X у зародыша. Кроме того, обращает на себя внимание очень большая частота мозаик у больных с синдромом Шерешевского-Тернера. В материале выкидышей, наоборот, мозаики с моносомией X крайне редки. Данные исследований показали, что только менее 1% всех моносомий X доходит до срока родов. Моносомии аутосом в материале выкидышей встречаются довольно редко. Это очень контрастирует с высокой частотой соответствующих трисомий.

Трисомии

В материале выкидышей трисомии представляют более половины всех количественных хромосомных аберраций. Обращает на себя внимание то, что в случаях моносомий недостающей хромосомой обычно оказывается X-хромосома, а в случаях избыточных хромосом, дополнительная хромосома чаще всего оказывается аутосомой.

Точная идентификация дополнительной хромосомы стала возможна благодаря методу G-бэндинга. Исследования показали, что все аутосомы могут принимать участие в нон-дисджанкшн (см. таблицу). Обращает на себя внимание, что три хромосомы, чаще всего встречающиеся при трисомиях новорожденных (15-я, 18-я и 21-я) чаще всего обнаруживаются и при летальных трисомиях у зародышей. Вариации относительных частот различных трисомий у зародышей отражают во многом сроки, на которых происходит гибель зародышей, поскольку, чем более летальной является комбинация хромосом, тем на более ранних сроках происходит остановка развития, тем реже будет обнаруживаться такая аберрация в материалах выкидышей (чем меньше срок остановки развития, тем труднее обнаружить такой зародыш).

Лишняя хромосома при летальных трисомиях у зародыша (данные 7 исследований: Буэ (Франция), Карр (Канада), Кризи (Великобритания), Дилл (Канада), Кадзи (Швейцария), Такахара (Япония), Теркелсен (Дания))
Дополнительная аутосома Количество наблюдений
A 1
2 15
3 5
B 4 7
5
C 6 1
7 19
8 17
9 15
10 11
11 1
12 3
D 13 15
14 36
15 35
E 16 128
17 1
18 24
F 19 1
20 5
G 21 38
22 47

Триплоидии

Крайне редко наблюдаемые при мертворождениях, триплоидии составляют пятую по частоте хромосомную аномалию в материале выкидыше. В зависимости от соотношения половых хромосом может быть 3 варианта триплоидий: 69XYY (самая редкая), 69, XXX и 69, XXY (самая частая). Анализ полового хроматина показывает, что при конфигурации 69, XXX чаще всего обнаруживается только одна глыбка хроматина, а при конфигурации 69, XXY чаще всего половой хроматин не обнаруживается.

Приведенный ниже рисунок иллюстрирует различные механизмы, приводящие к развитию триплоидии (диандрию, дигинию, диспермию). С помощью специальных методов (хромосомные маркеры, антигены тканевой совместимости) удалось установить относительную роль каждого из этих механизмов в развитии триплоидии у зародыша. Оказалось, что на 50 случаев наблюдений триплоидия была следствием дигинии в 11 случаях (22%), диандрии либо диспермии — в 20 случаях (40%), диспермии — в 18 случаях (36%).

Тетраплоидии

Тетраплоидии встречаются примерно в 5% случаев количественных хромосомных аберраций. Чаще всего встречаются тетраплоидии 92, XXXX. Такие клетки всегда содержат 2 глыбки полового хроматина. В клетках с тетраплоидией 92, XXYY никогда не бывает видно полового хроматина, но в них обнаруживают 2 флуоресцирующие Y-хромосомы.

Двойные аберрации

Большая частота хромосомных аномалий в материале выкидышей объясняет высокую частоту комбинированных аномалий в одном и том же зародыше. Напротив, у новорожденных комбинированные аномалии крайне редки. Обычно в таких случаях наблюдаются комбинации аномалии половой хромосомы и аномалии аутосомы.

В связи с более высокой частотой аутосомных трисомий в материале выкидышей, при комбинированных хромосомных аномалиях у абортусов чаще всего встречаются двойные аутосомные трисомии. Трудно сказать, связаны ли такие трисомии с двойным "нон-дисджанкшн" в одной и той же гамете, или со встречей двух аномальных гамет.

Частота сочетаний различных трисомий в одной и той же зиготе носит случайный характер, что позволяет предположить независимость друг от друга появления двойных трисомий.

Комбинация двух механизмов, приводящих к появлению двойных аномалий, позволяет объяснить появление других аномалий кариотипа, встречающихся при выкидышах. "Нон-дисджанкшн" при образовании одной из гамет в сочетании с механизмами образования полиплоидии объясняет появление зигот с 68 или 70 хромосомами. Сбой первого митотического деления у такой зиготы с трисомией может приводить к таким кариотипам, как 94,XXXX,16+,16+.

Структурные хромосомные аномалии

Согласно классическим исследованиям, частота структурных хромосомных аберраций в материале выкидышей составляет 4—5%. Однако многие исследования были сделаны до широкого использования метода G-бэндинга. Современные исследования указывают на более высокую частоту структурных хромосомных аномалий у абортусов. Обнаруживаются самые разные виды структурных аномалий. Примерно в половине случаев эти аномалии являются унаследованными от родителей, примерно в половине случаев они возникают de novo .

Влияние хромосомных аномалий на развитие зиготы

Хромосомные аномалии зиготы проявляются как правило уже в первые недели развития. Выяснение конкретных проявлений каждой аномалии сопряжено с целым рядом трудностей.

Во многих случаях установление срока беременности при анализе материала выкидышей крайне затруднено. Обычно сроком зачатия считается 14-й день цикла, но у женщин с невынашиванием беременности часто бывают задержки цикла. Кроме того, очень трудно бывает установить дату "смерти" плодного яйца, поскольку от момента гибели до выкидыша может пройти много времени. В случыае триплоидии этот период может составить 10—15 недель. Применение гормональных препаратов может еще более удлиннить это время.

С учетом этих оговорок, можно сказать, что чем меньше срок беременности на момент гибели плодного яйца, тем выше частота хромосомных аберраций. Согласно исследованиям Кризи и Лоритсена, при выкидышах до 15 недель беременности частота хромосомных аберраций составляет около 50%, при сроке 18 — 21 неделя — около 15%, при сроке более 21 недели — около 5—8%, что примерно соответствует частоте хромосомных аберраций в исследованиях перинатальной смертности.

Фенотипические проявления некоторых летальных хромосомных аберраций

Моносомии X обычно останавливаются в развитии к 6 неделям после зачатия. В двух третях случаев плодный пузырь размером 5—8 см не содержит зародыша, но существует шнурообразное образование с элементами эмбриональной ткани, остатками желточного мешка, плацента содержит субамниотические тромбы. В одной трети случаев плацента имеет такие же изменения, но обнаруживается морфологически неизмененный зародыш, погибший в возрасте 40—45 дней после зачатия.

При тетраплоидиях развитие останавливается к сроку 2-3 недели после зачатия, морфологически эта аномалия характеризуется "пустым плодным мешком".

При трисомиях наблюдаются различные типы аномалий развития, в зависимости от того, какая хромосома является лишней. Однако в подавляющем большинстве случаев развитие останавливается на очень ранних сроках, элементов зародыша не обнаруживается. Это классический случай "пустого плодного яйца" (анэмбрионии).

Трисомия 16, очень частая аномалия, характеризуется наличием маленького плодного яйца диаметром около 2,5 см, в полости хориона находится небольшой амниотический пузырек около 5 мм в диаметре и эмбриональный зачаток размером 1—2 мм. Чаще всего развитие останавливается на стадии эмбрионального диска.

При некоторых трисомиях, например, при трисомиях 13 и 14, возможно развитие зародыша до срока около 6 недель. Зародыши характеризуются циклоцефалической формой головы с дефектами закрытия верхнечелюстных холмиков. Плаценты гипопластичны.

Зародыши с трисомиями 21 (синдром Дауна у новорожденных) не всегда имеют аномалии развития, а если и имеют, то незначительные, не могущие служить причиной их гибели. Плаценты в таких случаев бывают бедны клетками, и представляются остановившимися в развитии на ранней стадии. Гибель зародыша в таких случаях представляется следствием плацентарной недостаточности.

Заносы. Сравнительный анализ цитогенетических и морфологических данных позволяет выделить два типа заносов: классический пузырный занос и эмбриональный триплоидный занос.

Выкидыши при триплоидиях имеют четкую морфологическую картину. Это выражается в сочетании полной или (чаще) частичной пузырной дегенерации плаценты и амниотического пузырька с зародышем, размеры которого (зародыша) очень малы по сравнению с относительно большим амниотическим пузырьком. Гистологическое исследование показывает не гипертрофию, а гипотрофию пузырно измененного трофобласта, образующего микрокисты в результате многочисленный инвагинаций.

Напротив, классический пузырный занос не затрагивает ни амниотический мешок, ни зародыш. В пузырьках обнаруживается избыточное образование синцитиотрофобласта с выраженной васкуляризацией. Цитогенетически большинство классических пузырных заносов имеет кариотип 46,XX. Проведенные исследования позволили установить хромосомные сбои, участвующие в образовании пузырного заноса. Было показано, что 2 X-хромосомы в классическом пузырном заносе идентичны и имеют отцовское происхождение. Наиболее вероятным механизмом развития пузырного заноса является истинный андрогенез, возникающий вследствие оплодотворения яйцеклетки диплоидным сперматозоидом, возникшим в результате сбоя второго мейотического деления и последующим полным выключением хромосомного материала яйцеклетки. С точки зрения патогенеза, такие хромосомные нарушения близки к нарушениям при триплоидии.

Оценка частоты хромосомных нарушений в момент зачатия

Можно попробовать расчитать количество зигот с хромосомными аномалиями при зачатии, основываясь на частоте хромосомных аномалий, обнаруживаемых в материале выкидышей. Однако прежде всего следует отметить, что поразительное сходство результатов исследований материала выкидышей, проведенное в разных частях света, говорит о том, что хромосомные сбои в момент зачатия являются очень характерным явлением в репродукции у человека. Кроме того, можно констатировать, что реже всего встречающиеся аномалии (например, трисомии A, B и F) связаны с остановкой развития на очень ранних стадиях.

Анализ относительной частоты различных аномалий, возникающих при нерасхождении хромосом в процессе мейоза, позволяет сделать следующие важные выводы:

1. Единственной моносомией, обнаруживаемой в материале выкидышей, является моносомия X (15% всех аберраций). Напротив, аутосомные моносомии практически не обнаруживаются в материале выкидышей, хотя теоретически их должно быть столько же, сколько и аутосомных трисомий.

2. В группе аутосомных трисомий частота трисомий разных хромосом значительно варьирует. Исследования, выполненные с использованием метода G-бэндинга, позволили установить, что все хромосомы могут быть участницами трисомии, однако некоторые трисомии встречаются гораздо чаще, например, трисомия 16 встречается в 15% случаев всех трисомий.

Из этих наблюдений можно сделать вывод, что, скорее всего, частота нерасхождения разных хромосом приблизительно одинакова, а различная частота аномалий в материале выкидышей связана с тем, что отдельные хромосомные аберрации приводят к остановке развития на очень ранних стадиях и поэтому с трудом поддаются обнаружению.

Эти соображения позволяют приблизительно расчитать реальную частоту хромосомных нарушений в момент зачатия. Расчеты, сделанные Буэ, показали, что каждое второе зачатие дает зиготу с хромосомными аберрациями .

Данные цифры отражают среднюю частоту хромосомных аберраций при зачатии в популяции. Однако данные цифры могут значительно колебаться у разных супружеских пар. У некоторых супружеских пар вероятность возникновения хромосомных аберраций в момент зачатия значительно превышает средний риск в популяции. У таких супружеских пар невынашивание беременности на малых сроках происходит гораздо чаще, чем у остальных супружеских пар.

Данные расчеты подтверждаются другими исследованиями, проведенными с использованием других методов:

1. Классическими исследованиями Хертига
2. Определением уровня хорионического гормона (ХГ) в крови женщин после 10 после зачатия. Часто этот тест оказывается положительным, хотя менструация приходит вовремя или с небольшой задержкой, и субъективно наступления беременности женщина не замечает ("биохимическая беременность")
3. Хромосомный анализ материала, полученного при искусственных абортах показал, что при абортах на сроке 6—9 недель (4—7 недель после зачатия) частота хромосомных аберраций составляет примерно 8%, а при искусственных абортах на сроке 5 недель (3 недели после зачатия) эта частота возрастает до 25%.
4. Было показано, что нерасхождение хромосом в процессе сперматогенеза является очень частым явлением. Так Пирсон и сотр. обнаружили, что вероятность нерасхождения в процессе сперматогенеза для 1-й хромосомы составляет 3,5%, для 9-й хромосомы — 5%, для Y-хромосомы — 2%. Если и другие хромосомы имеют вероятность нерасхождения примерно такого же порядка, то тогда только 40% всех сперматозоидов имеют нормальный хромосомный набор.

Экспериментальные модели и сравнительная патология

Частота остановки развития

Хотя различия в типе плацентации и количестве плодов затрудняют сравнение риска неразвивающейся беременности у домашних животных и у человека, определенные аналогии проследить можно. У домашних животных процент летальных зачатий колеблется между 20 и 60%.

Изучение летальных мутаций у приматов дало цифры, сравнимые с таковыми у человека. Из 23 бластоцист, выделенных у макак до зачатия, у 10 были грубые морфологические аномалии.

Частота хромосомных аномалий

Только экспериментальные исследования позволяют провести хромосомный анализ зигот на разных стадиях развития и оценить частоту хромосомных аберраций. Классические исследования Форда выявили хромосомные аберрации у 2% зародышей мышей в возрасте от 8 до 11 дней после зачатия. Дальнейшие исследования показали, что это слишком продвинутая стадия развития зародышей, и что частота хромосомных аберраций гораздо выше (см. ниже).

Влияние хромосомных аберраций на развитие

Большой вклад в дело выяснения масштаба проблемы внесли исследования Альфреда Гроппа из Любека и Чарльза Форда из Оксфорда, проводившиеся на так называемых "табачных мышах" (Mus poschiavinus ). Скрещивание подобных мышей с нормальными мышами дает большой спектр триплоидий и моносомий, позволяющих оценить влияние обоих типов аберраций на развитие.

Данные профессора Гроппа (1973 г.) приведены в таблице.

Распределение эуплоидных и анэуплоидных зародышей у гибридных мышей
Стадия развития День Кариотип Всего
Моносомии Эуплоидии Трисомии
До имплантации 4 55 74 45 174
После имплантации 7 3 81 44 128
9—15 3 239 94 336
19 56 2 58
Живые мыши 58 58

Эти исследования позволили подтвердить гипотезу о равной вероятности возникновения моносомий и трисомий при зачатии: аутосомные моносомии возникают с такой же частотой, как и трисомии, но зиготы с аутосомными моносомиями погибают еще до имплантации и не обнаруживаются в материале выкидышей.

При трисомиях гибель зародышей происходит на более поздних сдадиях, но ни один зародыш при аутосомных трисомиях у мышей не доживает до родов.

Исследования группы Гроппа позволили показать, что в зависимости от типа трисомии, зародыши погибают на разных сроках: с трисомиями 8, 11, 15, 17 — до 12 дня после зачатия, с трисомиями 19 — ближе к сроку родов.

Патогенез остановки развития при хромосомных аномалиях

Исследование материала выкидышей показывает, что во многих случаях хромосомных аберраций эмбриогенез резко нарушается, так что элементов эмбриона не обнаруживается вообще ("пустые плодные яйца", анэмбриония) (остановка развития до срока 2-3 недель после зачатия). В других случаях удается обнаружить элементы зародыша, часто неоформленные (остановка развития на сроке до 3-4 недель после зачатия). При наличии хромосомных аберраций эмбриогенез часто или вообще невозможен, или резко нарушается с самых ранних стадий развития. Проявления таких нарушений выражены в гораздо большей степени в случае аутосомных моносомий, когда развитие зиготы останавливается в первые дни после зачатия, но и в случае трисомий хромосом, имеющих ключевое значение для эмбриогенеза, развитие также прекращается в первые дни после зачатия. Так, например, трисомия 17 обнаруживается только у зигот, остановившихся в развитии на самых ранних стадиях. Кроме того, многие хромосомные аномалии связаны вообще с пониженной способностью к делению клеток, как показывает изучение культур таких клеток in vitro .

В других случаях развитие может продолжаться до 5—6—7 недель после зачатия, в редких случаях — дольше. Как показали исследования Филиппа, в таких случаях гибель плода объясняется не нарушением эмбрионального развития (обнаруживаемые дефекты сами по себе не могут быть причиной смерти зародыша), а нарушением формирования и функционирования плаценты (стадия развития плода опережает стадию формирования плаценты.

Исследования культур клеток плаценты при различных хромосомных аномалиях показали, что в большинстве случаев деление плацентарных клеток происходит гораздо медленнее, чем при нормальном кариотипе. Это во многом объясняет, почему новорожденные с хромосомными аномалиями обычно имеют низкую массу тела и сниженную массу плаценты.

Можно предположить, что многие нарушения развития при хромосомных аберрациях связаны именно с пониженной способностью клеток к делению. При этом возникает резкая диссинхронизация процессов развития зародыша, развития плаценты и индукции дифференциации и миграции клеток.

Недостаточное и запоздалое формирование плаценты может приводить к нарушению питания и к гипоксии зародыша, а также — к снижению гормональной продукции плаценты, что может быть дополнительной причиной развития выкидышей.

Исследования клеточных линий при трисомиях 13, 18 и 21 у новорожденных показало, что клетки делятся медленнее, чем при нормальном кариотипе, что проявляется в снижении плотности клеток в большинстве органов.

Загадкой является то, почему при единственной аутосомной трисомии, совместимой с жизнью (трисомия 21, синдром Дауна), в одних случаях происходит задержка развития зародыша на ранних стадиях и самопроизвольный выкидыш, а в других — ненарушенное развитие беременности и рождение жизнеспособного ребенка. Сравнение клеточных культур материала выкидышей и доношенных новорожденных при трисомии 21 показало, что различия в способности клеток к делению в первом и втором случаях резко различается, что возможно объясняет разную судьбу таких зигот.

Причины количественных хромосомных аберраций

Изучение причин хромосомных аберраций крайне затруднено, прежде всего из-за высокой частоты, можно сказать, всеобщности этого явления. Очень трудно корректно собрать контрольную группу беременных женщин, с большим трудом поддаются изучению нарушения сперматогенеза и оогенеза. Несмотря на это, некоторые этиологические факторы повышения риска хромосомных аберраций выяснить удалось.

Факторы, напрямую связанные с родителями

Влияние возраста матери на вероятность рождения ребенка с трисомией 21 наводит на мысль о возможном влиянии возраста матери на вероятность возникновения летальных хромосомных аберраций у зародыша. Приводимая ниже таблица показывает связь возраста матери с кариотипом материала выкидышей.

Средний возраст матери при хромосомных аберрациях абортусов
Кариотип Число наблюдений Средний возраст
Нормальный 509 27,5
Моносомия X 134 27,6
Триплоидии 167 27,4
Тетраплоидия 53 26,8
Аутосомные трисомии 448 31,3
Трисомии D 92 32,5
Трисомии E 157 29,6
Трисомии G 78 33,2

Как видно из таблицы, не было обнаружено связи между возрастом матери и самопроизвольными выкидышами, связанными с моносомией X, триплоидией или тетраплоидией. Повышение среднего возраста матери отмечено для аутосомных трисомий в целом, но по разным группам хромосом цифры были получены разные. Однако общее число наблюдений в группах недостаточно, чтобы уверенно судить о каких-либо закономерностях.

Возраст матери в большей степени связан с повышенным риском выкидышей с трисомиями акроцентрических хромосом группы D (13, 14, 15) и G (21, 22), что совпадает и со статистикой хромосомных аберраций при мертворождениях.

Для некоторых случаев трисомий (16, 21) было определено происхождение лишней хромосомы. Оказалось, что возраст матери связан с повышением риска трисомий только в случае материнского происхождения лишней хромосомы. Не было обнаружено связи возраста отца с повышением риска трисомий.

В свете исследований на животных высказываются предположения о возможной связи старения гамет и задержки оплодотворения на риск возникновения хромосомных аберраций. Под старением гамет понимают старение сперматозоидов в половых путях женщины, старение яйцеклетки либо в результате перезрелости внутри фолликула или в результате задержки выхода яйцеклетки из фолликула, либо в результате трубной перезрелости (запоздалого оплодотворения в трубе). Скорее всего, подобные законы действуют и у человека, но достоверных подтверждений этого пока не получено.

Факторы окружающей среды

Было показано, что вероятность хромосомных аберраций при зачатии повышается у женщин, подвергшихся действию ионизирующей радиации. Предполагается связь между риском хромосомных аберраций и действием других факторов, в частности — химических.

Заключение

1. Не каждую беременность удается сохранить на малых сроках. В большом проценте случаев выкидыши обусловлены хромосомными нарушениями у плода, и родить живого ребенка невозможно. Гормональное лечение может отсрочить момент выкидыша, но не может помочь зародышу выжить.

2. Повышенная нестабильность генома супругов является одним из причинных факторов бесплодия и невынашивания беременности. Выявить такие супружеские пары помогает цитогенетическое обследование с анализом на хромосомные аберрации. В некоторых случаях повышенной нестабильности генома специальная антимутагенная терапия может помочь повысить вероятность зачатия здорового ребенка. В других случаях рекомендуется донорская инсеминация или использование донорской яйцеклетки.

3. При невынашивании беременности, обусловленном хромосомными факторами, организм женщины может "запомнить" неблагоприятный иммунологический ответ на плодное яйцо (иммунологический импринтинг). В таких случаях возможно развитие реакции отторжения и на зародыши, зачатые после донорской инсеминации или с использованием донорской яйцеклетки. В таких случаях рекомендуется проведение специального иммунологического обследования.

Человек родился! С этого дня начнется отсчет месяцам, годам, десятилетиям его жизни. Но ведь до появления на свет будущий человек целых девять месяцев живет и развивается в материнском чреве! И от того, как протекает внутриутробный период, во многом зависят здоровье будущего ребенка, его физические и умственные способности.

Жизнь человека начинается в тот момент, когда в материнском организме сливаются воедино две половые клетки: женская - яйцеклетка и мужская - . При этом в ядре образовавшейся новой клетки - зиготы встречаются 23 отцовские и 23 материнские хромосомы. Эти материальные носители наследственной информации формируют генетический аппарат нового человека, который отныне будет управлять индивидуальным развитием его организма. Хромосомы же определяют и пол будущего ребенка. А вернее, его определяет 23-я половая хромосома отца.

Как известно, у женщин половые хромосомы одинаковы (XX), поэтому яйцеклетка всегда несет Х-хромосому. А вот у возможны варианты. Ведь у мужчин в генетическом аппарате клетки в 23-й паре могут находиться как XX-, так и ХУ-хромосомы. Поэтому примерно половина зрелых несет в себе Х-хромосому, а другая половина- У-хромосому. И если с яйцеклеткой сливается носитель Х-хромосомы, будет развиваться девочка, а когда в оплодотворении участвует носитель У-хромосомы, то - мальчик. Таким образом, пол будущего ребенка, как говорится, зависит от мужчины.

Итак, половые клетки родителей слились воедино. Затем в течение некоторого времени - от 15 минут до нескольких часов - ничего не происходит и будущий человек остается одноклеточным организмом, таким, например, как амеба. Наконец, из одной клетки образуются 2, потом 4, 5, 7, 8... 16... Темп деления нарастает, но клетки делятся асинхронно, то есть не все сразу, образуя то четное, то нечетное число.

В этот период, когда достаточно крупные первые клетки тесно соприкасаются друг с другом, зародыш больше всего похож на тутовую ягоду. Его так и называют - морула (от латинского morus - тутовая ягода). Эта «ягодка», продолжая делиться, медленно продвигается по яйцеводу к тому месту, где ей суждено поселиться на долгих девять месяцев,- к матке. На этот путь уходит вся первая неделя. К ее концу морула перестает быть ягодой и превращается в пузырек: плотная клеточная масса разделяется на зародышевый узелок и поверхностный слой клеток, окружающих этот узелок.

В таком виде зародыш поступает в матку. Поскольку к этому времени он успевает почти полностью израсходовать тот небольшой запас питательных веществ, который был припасен для него в яйцеклетке, зародыш спешит прикрепиться к стенке матки, чтобы получать кислород и питание из организма матери. Делает он это с помощью своих наружных клеток. Часть их образует оболочки плода, предохраняющие его от различных неблагоприятных воздействий. А другие наружные клетки врастают, словно растения корнями, в слизистую оболочку матки. Там они быстро разрастаются и сильно ветвятся. Внутри ветвлений проходят мелкие кровеносные сосуды, которые через пуповину ведут к плоду. Так формируется плацента, или детское место,- орган связи плода и матери.

Плацента обеспечивает зародыш кислородом и питательными веществами. Через плаценту выводятся из организма ненужные, отработанные вещества. Она служит барьером, препятствует переходу в кровь зародыша химически вредных веществ. Именно плацента охраняет плод от проникновения болезнетворных микробов, если мать заболела. Роль ее настолько важна и многообразна, что специалисты даже утверждают: нарушения деятельности плаценты могут сделать из потенциального Эйнштейна обыкновенную посредственность, несмотря на все наследственные задатки. Повреждения плаценты, ее отслойка чаще всего грозят зародышу гибелью.

Одновременно с детским местом возникает и постепенно увеличивается пуповина. По ее кровеносным сосудам кровь зародыша течет к детскому месту. Там, насытившись кислородом и питательными веществами и очистившись от ненужных, отработанных продуктов жизнедеятельности, кровь возвращается вновь к зародышу.
Между зародышем и окружающей его тонкой оболочкой находятся околоплодные воды. Всасываясь и образуясь вновь, они способствуют обмену веществ зародыша. А кроме того, они охраняют его от неравномерного давления стенок матки, которое могло бы нарушить форму развивающихся органов.
А что же происходит в это время с самим зародышем? Его развитие не прекращается ни на секунду: надо спешить, ведь за считанные недели ему предстоит проделать тот путь эволюционного развития, которым природа, создавая человека, шла миллионы лет.

В течение второй недели после оплодотворения клетки зародышевого узелка расщепляются на два слоя, а затем на третьей неделе между ними появляется и третий слой. Это так называемые зародышевые листки: из каждого листка впоследствии разовьются строго определенные органы и ткани. Одновременно со средним листком закладывается и хорда- скелетный тяж, идущий вдоль средней линии со стороны спины зародыша. Со временем на месте хорды образуется позвоночник.

В середине третьей недели у зародыша возникают первые кровеносные сосуды. А примерно через три дня после их появления начнет формироваться и сердце. Удивительно, у 23-дневного зародыша оно имеет форму трубки, но уже сокращается! Сердце работает и одновременно создает себя - формируются его полости, внутри-сердечные перегородки, клапаны.

В это время уже функционирует артериальная и венная система сосудов. Но путь кровотока у зародыша иной, чем у новорожденного. Ведь до момента рождения легкие не работают, и кислород доставляется вместе с кровью через пуповину. Только после рождения, когда пуповину перережут, изменится направление кровотока и начнет функционировать легочный круг кровообращения. Тогда сосуды, направляющие кровь к пуповине и обратно, отомрут. Правда, это еще не скоро, ведь прошел только первый месяц.

Только месяц, но уже сокращается сердце и по кровеносным сосудам струится кровь, уже в трех зародышевых листках кроются прообразы будущих органов... Но и будущие болезни часто уходят своими корнями в эти первые дни, потому что именно в этот период зародыш крайне чувствителен ко всякого рода неблагоприятным воздействиям, повреждающим факторам. И таким «повреждающим фактором» для него может стать любой, на ваш взгляд, пустяк - немного сухого вина, одна - три сигареты, таблетка снотворного... Задумайтесь над этим и постарайтесь с первых же дней исключить из своей жизни все, что могло бы повредить вашему будущему ребенку!

Организм человека является сложной системой, деятельность которой регулируется на различных уровнях. При этом определенные вещества должны участвовать в конкретных биохимических процессах, чтобы все клетки, органы и целые системы могли правильно функционировать. А для этого требуется заложить правильное основание. Подобно тому, как многоэтажный дом не выстоит без соответствующим образом подготовленного фундамента, «здание» человеческого тела требует корректной передачи наследственного материала. Именно заложенный в нем генетический код управляет развитием зародыша, позволяет сформироваться всем взаимодействиям и обуславливает нормальное существование человека.

Однако в некоторых случаях в наследственной информации появляются ошибки. Они могут возникать на уровне отдельных генов или же касаться их крупных объединений. Подобные изменения называются генными мутациями. В отдельных ситуациях проблема относится к целым хромосомам, то есть к структурным единицам клетки. Соответственно, их называют хромосомными мутациями. Наследственные болезни, развивающиеся вследствие нарушений хромосомного набора или строения хромосом, получили название хромосомных.

В норме каждая клетка организма содержит одно и то же количество хромосом, объединенных в пары с одинаковыми генами. У человека полный набор состоит из 23 пар, и только в половых клетках вместо 46 хромосом находится половинное число. Это необходимо для того, чтобы в процессе оплодотворения при слиянии сперматозоида и яйцеклетки получилась полноценная комбинация со всеми необходимыми генами. Гены распределены по хромосомам не случайно, а в строго определенном порядке. При этом линейная последовательность сохраняется одинаковой для всех людей.

Однако в процессе образования половых клеток могут произойти различные «ошибки». В результате мутаций изменяется количество хромосом или их структура. По этой причине после оплодотворения в яйцеклетке может оказаться избыточное или, напротив, недостаточное количество хромосомного материала. Из-за дисбаланса процесс развития зародыша нарушается, что может привести к самопроизвольному прерыванию беременности, рождению мертвого ребенка либо развитию наследственного хромосомного заболевания.

Этиология хромосомных заболеваний

К этиологическим факторам хромосомных патологий относятся все разновидности хромосомных мутаций. Кроме того, некоторые геномные мутации также способны оказывать подобное действие.

У человека встречаются делеции, дупликации, транслокации и инверсии, то есть все типы мутаций. При делеции и дупликации генетическая информация оказывается в недостаточном и избыточном количестве соответственно. Поскольку современными методами можно выявить отсутствие даже небольшой части генетического материала (на уровне гена), то провести четкую границу между генными и хромосомными заболеваниями практически невозможно.

Транслокации представляют собой обмен генетическим материалом, который происходит между отдельными хромосомами. Иными словами, происходит перемещение участка генетической последовательности на негомологичную хромосому. Среди транслокаций выделяют две важные группы – реципрокные и Робертсоновские.

Транслокации реципрокного характера без потери задействованных участков называются сбалансированными. Они, как и инверсии, не вызывают потери генной информации, поэтому не приводят к паталогическим эффектам. Тем не менее, при дальнейшем участии таких хромосом в процессе кроссинговера и редукции могут образовываться гаметы с несбалансированными наборами, обладающие недостаточным набором генов. Их участие в процессе оплодотворения приводит к тому, что у потомства развиваются те или иные наследственные синдромы.

Для Робертсоновских транслокаций характерно участие двух акроцентрических хромосом. В ходе процесса короткие плечи утрачиваются, а длинные сохраняются. Из 2 исходных хромосом формируется одна цельная, метацентрическая. Несмотря на потерю части генетического материала развития патологий в таком случае обычно не происходит, поскольку функции утраченных участков компенсируются аналогичными генами в остальных 8 акроцентрических хромосомах.

При концевых делециях (то есть при их утрате) может сформироваться кольцевая хромосома. У ее носителя, получившего такой генный материал от одного из родителей, отмечают частичную моносомию по концевым участкам. При разрыве через центромеру может сформироваться изохромосома, имеющая одинаковые по набору генов плечи (у обычной хромосомы они отличаются).

В некоторых случаях может развиваться однородительская дисомия. Она возникает, если при нерасхождении хромосом и оплодотворении возникнет трисомия, а после этого одна из трех хромосом будет удалена. Механизм этого явления в настоящее время не изучен. Однако в результате в хромосомном наборе появится две копии хромосомы одного родителя, в то время как часть генной информации от второго родителя будет утеряна.

Многообразие вариантов искажения хромосомного набора обуславливает различные формы заболеваний.

Имеется три базовых принципа, которые позволяют точно классифицировать возникшую хромосомную патологию. Их соблюдение обеспечивает однозначное указание на форму отклонения.

Согласно первому принципу необходимо определить характеристику мутации, генной или хромосомной, причем требуется также четко указать конкретную хромосому. К примеру, это может быть простая трисомия по 21 хромосоме или триплоидия. Сочетание индивидуальной хромосомы и типа мутации определяет формы хромосомной патологии. Благодаря соблюдению этого принципа можно точно установить, в какой структурной единице имеются изменения, а также выяснить, зафиксирован избыток или недостаток хромосомного материала. Такой подход более эффективен, чем классификация по клиническим признакам, поскольку многие отклонения вызывают сходные нарушения развития организма.

Согласно второму принципу нужно определить тип клеток, в котором произошла мутация – зигота или гамета. Мутации в гаметах приводят к появлению полных форм хромосомного заболевания. В каждой клетке организма будет содержаться копия генетического материала с хромосомной аномалией. Если же нарушение происходит позднее, на этапе зиготы или во время дробления, то мутация классифицируется как соматическая. В этом случае часть клеток получает изначальный генетический материал, а часть – с измененным хромосомным набором. Одновременно в организме может присутствовать два и более типа наборов. Их сочетание напоминает мозаику, поэтому такая форма болезни называется мозаичной. Если в организме присутствует более 10% клеток с измененным хромосомным набором, клиническая картина повторяет полную форму.

Согласно третьему принципу выявляется поколение, в котором мутация появилась первый раз. Если изменение было отмечено в гаметах здоровых родителей, то говорят о спорадическом случае. Если же оно уже имелось в материнском или отцовском организме, то речь идет о наследуемой форме. Значительная часть унаследованных хромосомных заболеваний вызывается робертсоновскими транслокациями, инверсиями и сбалансированными реципрокными транслокациями. В процессе мейоза они могут привести к образованию патологической комбинации.

Полная точная диагностика подразумевает, что установлены тип мутации, затронутая хромосома, выяснен полный или мозаичный характер заболевания, а также установлена передача по наследству или спорадическое возникновение. Получить необходимые для этого данные можно при проведении генетической диагностики с использованием проб пациента, а в некоторых случаях и его родственников.

Общие вопросы

Интенсивное развитие генетики в течение последних десятилетий позволило развить отдельное направление хромосомной патологии, которая постепенно приобретает все большое значение. К этой области относятся не только хромосомные болезни, но и различные нарушения во время внутриутробного развития (к примеру, выкидыши). В настоящее время счет аномалий идет уже на 1000. Свыше ста форм характеризуются клинически очерченной картиной и называются синдромами.

Выделяется несколько групп болезней. Триплоидией называется случай, при котором в клетках организма имеется лишняя копия генома. Если же появился дубликат только одной хромосомы, то подобное заболевание называется трисомией. Также причинами аномального развития организма могут быть делеции (удаленные участки генетического кода), дупликации (соответственно, лишние копии генов или их групп) и иные дефекты. Английский врач Л. Даун в 1866 году описал одну из самых известных болезней такого рода. Синдром, получивший его имя, развивается при наличии лишней копии 21 хромосомы (трисомия-21). Трисомии по другим хромосомам, как правило, заканчиваются выкидышами или приводят к смерти в детском возрасте из-за серьезных нарушений в развитии.

Позже были открыты случаи моносомии по X-хромосоме. В 1925 году Шерешевский Н.А и в 1938 году Тернер Г. описали его симптомы. Трисомия-XXY, которая встречается у мужчин, была описана Клайнфельтером в 1942 году.

Указанные случаи заболеваний стали первыми объектами исследований в этой области. После того, как расшифровали этиологию трех перечисленных синдромов, фактически появилось направление хромосомных болезней. В течение 60-х годов дальнейшие цитогенетические исследования привели к формированию клинической цитогенетики. Ученые доказали связь между патологическими отклонениями и хромосомными мутациями, а также получили статистические данные о частоте появления мутаций у новорожденных и в случаях самопроизвольного прерывания беременности.

Типы хромосомных аномалий

Хромосомные аномалии могут быть как относительно крупными, так и небольшими. В зависимости от их размеров меняются методы исследования. К примеру, для точечных мутаций, делеций и дупликаций, касающихся участков длиной в сотню нуклеотидов, обнаружение при помощи микроскопа невозможно. Определить хромосомное нарушение при помощи метода дифференциального окрашивания возможно только в том случае, если величина затронутого участка исчисляется в миллионах нуклеотидов. Небольшие мутации можно выявить лишь при помощи установления нуклеотидной последовательности. Как правило, большие по размерам нарушения (к примеру, видимые в микроскоп) приводят к более выраженному воздействию на функционирование организма. Кроме того, аномалия может затрагивать не только ген, но и участок наследственного материала, функции которого в настоящее время не исследованы.

Моносомией называется аномалия, выражающаяся в отсутствии одной из хромосом. Обратным случаем является трисомия – добавление лишней копии хромосомы к стандартному набору из 23 пар. Соответственно, меняется и число копий генов, которые в норме присутствуют в двух экземплярах. При моносомии отмечается нехватка гена, при трисомии – его избыток. Если хромосомная аномалия приводит к изменению числа отдельных участков, то говорят о частичной трисомии или моносомии (к примеру, по плечу 13q).

Известны также случаи однородительской дисомии. При этом пара гомологичных хромосом (либо одна и часть гомологичной ей) попадает в организм от одного из родителей. Причиной является неизученный механизм, предположительно состоящий из двух фаз – образование трисомии и удаление одной из трех хромосом. Воздействие однородительской дисомии может быть как незначительным, там и заметным. Дело в том, что если в одинаковых хромосомах имеется рецессивный мутантный аллель, то он автоматически проявляется. В то же время родитель, от которого была получена хромосома с мутацией, из-за гетерозиготности по гену может не иметь проблем со здоровьем.

Из-за высокой важности генетического материала для всех этапов развития организма даже небольшие аномалии могут вызвать серьезные изменения в скоординированной деятельности генов. Ведь их совместная работа шлифовалась в течение миллионов лет эволюции. Неудивительно, что последствия от возникновения такой мутации, скорее всего, начинают проявляться уже на уровне гамет. Особенно сильно они влияют на мужчин, поскольку зародыш в определенный момент должен перейти с женского пути развития на мужской. Если же активности соответствующих генов недостаточно, возникают различные отклонения, вплоть до гермафродитизма.


Первые исследования эффектов от хромосомных нарушений стали проводить в 60-х годах, после того как был установлен хромосомный характер некоторых заболеваний. Можно условно выделить две большие группы связанных эффектов: врожденные пороки развития и изменения, вызывающие летальные исходы. Современная наука располагает сведениями, что хромосомные аномалии начинают проявляться уже на стадии зиготы. Летальные эффекты при этом являются одной из основных причин гибели плода в утробе (этот показатель у человека достаточно высок).

Хромосомные аберрации – это изменение структуры хромосомного материала. Они могут как возникать спорадически, так и передаваться по наследству. Точная причина, по которой они появляются, не установлена. Ученые полагают, что за некоторую часть таких мутаций отвечают различные факторы окружающей среды (например, химически активные вещества), которые воздействуют на эмбрион или даже на зиготу. Интересен тот факт, что большая часть хромосомных аберраций обычно связана с хромосомами, которые зародыш получает от отца.

Значительная часть хромосомных аберраций встречается очень редко и была обнаружена один раз. В то же время некоторые другие достаточно часто встречаются, причем даже у людей, не связанных родственными узами. К примеру, широко распространена транслокация центромерных или близких к ним районов 13 и 14 хромосом. Утрата неактивного хроматина коротких плеч практически не влияет на состояние здоровья. При аналогичных робертсоновских транслокациях в кариотип попадает 45 хромосом.

Примерно две трети всех обнаруживаемых у новорожденных хромосомных аномалий компенсируются за счет других копий генов. По этой причине они не несут серьезной угрозы нормальному развитию ребенка. Если же компенсация нарушения невозможна, возникают пороки развития. Часто такая несбалансированная аномалия выявляется у больных с умственной отсталостью и другими врожденными пороками, а также у плода после самопроизвольных абортов.

Известны компенсированные аномалии, которые способны наследоваться из поколения в поколение без возникновения заболеваний. В некоторых случаях такая аномалия может перейти в несбалансированную форму. Так, если имеется транслокация, затрагивающая 21 хромосому, возрастает риск трисомии по ней. По статистике такие транслокации имеются у каждого 20 ребенка, у которого зафиксирована трисомия-21, причем в каждом пятом случае аналогичное нарушение есть у одного из родителей. Поскольку большая часть детей с вызванной транслокацией трисомией-21 рождается у молодых (менее 30 лет) мам, то в случае обнаружения этого заболевания у ребенка необходимо произвести диагностическое обследование молодых родителей.

Риск появления нарушений, которые не компенсируются, сильно зависит от транслокации, поэтому теоретические расчеты затруднены. Тем не менее, приблизительно определить вероятность соответствующей патологии можно на основании статистических данных. Такая информация собрана для распространенных транслокаций. В частности, робертсоновская транслокация между 14 и 21 хромосомами у матери с вероятностью 2 процента приводит к трисомии-21 у ребенка. Эта же транслокация у отца передается по наследству с вероятностью 10%.

Распространенность хромосомных аномалий

Результаты исследований показывают, что как минимум десятая часть яйцеклеток после оплодотворения и около 5-6 процентов плодов имеют различные хромосомные аномалии. Как правило, на 8-11 неделе в таком случае происходит самопроизвольное прерывание беременности. В некоторых случаях они вызывают более поздние выкидыши или приводят к рождению мертвого ребенка.

У новорожденных (по результатам обследования более 65 тысяч детей) изменение числа хромосом либо значительные хромосомные аберрации встречаются примерно у 0,5% от общего количества. Как минимум каждый 700-й имеет трисомию по 13, 18 или 21 хромосоме; около 1 из 350 мальчиков имеют расширенный до 47 единиц набор хромосом (кариотипы 47,XYY и 47,XXY). Моносомия по X-хромосоме встречается реже – единичные случаи на несколько тысяч. Порядка 0,2% имеют компенсированные хромосомные аберрации.

У взрослых иногда также выявляются наследуемые отклонения (как правило, компенсированные), иногда с трисомией по половым хромосомам. Исследования также показывают, что примерно 10-15 процентов от общего числа случаев умственной отсталости могут быть объяснены наличием хромосомной аномалии. Этот показатель значительно возрастает, если вместе с нарушениями умственного развития наблюдаются анатомические дефекты. Бесплодие также часто вызывается лишней половой хромосомой (у мужчин) и моносомией/аберрацией по X хромосоме (у женщин).

Связь хромосомных аномалий и злокачественных образований

Как правило, исследование клеток злокачественных новообразований приводит к обнаружению видимых в микроскоп хромосомных аномалий. Сходные результаты дает проверка при лейкозе, лимфоме и ряде других заболеваний.

В частности, для лимфом нередким случаем является обнаружение транслокации, сопровождающейся разрывом внутри или рядом с локусом тяжелой цепи иммуноглобулина (14 хромосома). При этом ген MYC перемещается с 8 хромосомы на 14.

Для миелолейкоза в большинстве случаев (свыше 95%) фиксируется транслокация между 22 и 9 хромосомами, вызывающая появление характерной «филадельфийской» хромосомы.

Бластный криз в процессе развития сопровождается появлением в кариотипе последовательных хромосомных аномалий.

Методами дифференциального окрашивания с последующим наблюдением в микроскоп, а также при помощи молекулярно-генетических способов тестирования, можно своевременно выявлять хромосомные аномалии при различных лейкозах. Эта информация помогает сделать прогноз развития, по ней уточняется диагноз и корректируется терапия.

Для распространенных солидных опухолей, таких, как рак толстой кишки, рак молочной железы и т.д. обычные цитогенетические методы применимы с некоторыми ограничениям. Тем не менее, характерные для них хромосомные аномалии также были выявлены. Имеющиеся в опухолях отклонения часто связаны с генами, отвечающими за процесс нормального роста клеток. Из-за амплификации (образования множественных копий) гена иногда отмечается формирование мелких мини-хромосом в клетках новообразований.

В некоторых случаях появление злокачественного образования вызывает потеря гена, который должен обеспечивать подавление пролиферации. Причин может быть несколько: делеции и разрыв в процессе транслокации являются наиболее частыми. Мутации такого рода принято считать рецессивными, поскольку наличие даже одной нормальной аллели обычно обеспечивает достаточный контроль роста. Нарушения могут появляться или наследоваться. Если же в геноме отсутствует нормальная копия гена, то пролиферация перестает зависеть от регулирующих факторов.

Таким образом, наиболее значимыми хромосомными аномалиями, влияющими на возникновение и рост злокачественных новообразований, являются следующие типы:

Транслокации, поскольку они могут привести к нарушению нормального функционирования генов, отвечающих за пролиферацию (либо вызвать их усиленную работу);

Делеции, которые наряду с прочими рецессивными мутациями вызывают изменения в процессе регуляции роста клетки;

Рецессивные мутации, из-за рекомбинации становящиеся гомозиготными и оттого проявляющиеся в полной мере;

Амплификации, стимулирующие пролиферацию клеток опухоли.

Выявление указанных мутаций в ходе генетической диагностики может указывать на повышенный риск развития злокачественных новообразований.

Известные заболевания хромосомной природы

Одним из самых известных заболеваний, происходящих по причине наличия аномалий в генетическом материале, является синдром Дауна. Он обуславливается трисомией по 21 хромосоме. Характерным признаком этой болезни является отставание в развитии. Дети испытывают серьезные проблемы во время обучения в школе, часто им требуется альтернативная методика преподавания материала. Вместе с тем отмечаются нарушения физического развития – плоское лицо, увеличенные глаза, клинодактилия и другие. Если такие люди прикладывают значительные усилия, они могут достаточно хорошо социализироваться, известен даже случай успешного получения высшего образования мужчиной с синдромом Дауна. У больных повышен риск заболеть деменцией. Это и ряд других причин приводит к небольшой продолжительности жизни.

К трисомии относится и синдром Патау, только в этом случае имеется три копии 13 хромосомы. Для заболевания характерны множественные пороки развития, часто с полидактилией. В большинстве случаев отмечается нарушение деятельности центральной нервной системы либо ее неразвитость. Часто (примерно в 80 процентах) больные имеют пороки развития сердца. Тяжелые нарушения приводят к высокой смертности – в первый год жизни умирает до 95% детей с этим диагнозом. Заболевание не поддается лечению или коррекции, как правило, можно лишь обеспечить достаточно постоянный контроль состояния человека.

Еще одна форма трисомии, с которой рождаются дети, относится к 18 хромосоме. Заболевание в этом случае носит название синдрома Эдвардса и характеризуется множественными нарушениями. Деформируются кости, часто наблюдается измененная форма черепа. Сердечно-сосудистая система обычно с пороками развития, также проблемы отмечаются с органами дыхания. В результате около 60% детей не доживают до 3 месяцев, к 1 году умирает до 95% детей с этим диагнозом.

Трисомия по другим хромосомам у новорожденных практически не встречается, поскольку почти всегда приводит к преждевременному прерыванию беременности. В части случаев рождается мертвый ребенок.

С нарушениями числа половых хромосом связан синдром Шерешевского-Тернера. Из-за нарушений в процессе расхождения хромосом теряется X-хромосома в женском организме. В результате организм не получает должного количества гормонов, поэтому нарушается его развитие. В первую очередь это относится к половым органам, которые развиваются лишь отчасти. Практически всегда для женщины это обозначает невозможность иметь детей.

У мужчин полисомия по Y или X хромосоме приводит к развитию синдрома Клайнфельтера. Для этого заболевания характерна слабая выраженность мужских признаков. Зачастую сопровождается гинекомастией, возможно отставание в развитии. В большинстве случаев наблюдаются ранние проблемы с потенцией и бесплодие. В этом случае, как и для синдрома Шерешевского-Тернера, выходом может стать экстракорпоральное оплодотворение.

Благодаря методам пренатальной диагностики стало возможным выявление этих и других заболеваний у плода во время беременности. Семейные пары могут принять решение о прерывании беременности, чтобы попробовать зачать другого ребенка. Если же они принимают решение выносить и родить малыша, то знание особенностей его генетического материала позволяет заранее подготовиться к определенным методам профилактики или лечения.

Кариотип – систематизированный набор хромосом ядра клетки с его количественными и качественными характеристиками.

Нормальный женский кариотип - 46,XX Нормальный мужской кариотип - 46,XY

Исследование кариотипа - процедура, призванная выявить отклонения структуры строения и числа хромосом.

Показания для кариотипирования:

  • Множественные врожденные пороки развития, сопровождаемые клинически анормальным фенотипом или дизморфизмом
  • Умственная отсталость или отставание в развитии
  • Нарушение половой дифференцировки или аномалии полового развития
  • Первичная или вторичная аменорея
  • Аномалии спермограммы – азооспермия или тяжелая олигоспермия
  • Бесплодие неясной этиологии
  • Привычное невынашивание
  • Родители пациента со структурными хромосомными аномалиями
  • Повторное рождение детей с хромосомными аномалиями

К сожалению, с помощью исследования кариотипа можно определить лишь крупные структурные перестройки. В большинстве же случаев аномалии строения хромосом представляют собой микроделеции и микродупликации невидимые под микроскопом. Однако такие изменения хорошо идентифицируются современными молекулярными цитогенетическими методами - флуоресцентной гибридизацией (FISH) и хромосомным микроматричным анализом.

Аббревиатура FISH расшифровывается как fluorescent in situ hybridization – флуоресцентная гибридизация на месте. Это цитогенетический метод, который применяют для выявления и определения положения специфической последовательности ДНК на хромосомах. Для этого используют специальные зонды - нуклеозиды, соединенные с флуорофорами или некоторыми другими метками. Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа.

Метод FISH позволяет изучать небольшие хромосомные перестройки, которые не идентифицируются при стандартном исследовании кариотипа. Однако, имеет один существенный недостаток. Зонды являются специфичными только к одному участку генома и, как следствие, при одном исследовании можно определить наличие или число копий только этого участка (или нескольких при использовании многоцветных зондов). Поэтому важным является правильная клиническая предпосылка, а FISH анализ может только подтвердить иди не подтвердить диагноз.

Альтернативой этому методу является хромосомный микроматричный анализ, который при такой же точности, чувствительности и специфичности определяет количество генетического материала в сотнях тысяч (и даже миллионах) точек генома, что дает возможность диагностики практически всех известных микроделеционных и микродупликационных сииндромов.

Хромосомный микроматричный анализ – молекулярно-цитогенетический метод для выявления вариаций числа копий ДНК по сравнению с контрольным образцом. При выполнении этого анализа исследу¬ются все клинически значимые участки генома, что позволяет с максимальной точностью исключить хромосомную патологию у обследуемого. Таким образом могут быть выявлены патогенные деле¬ции (исчезновение участков хромосом), дупликации (появление дополни¬тельных копий генетического материала), участки с потерей гетерозиготности, которые имеют важное значение при болезнях импринтинга, близкородственных браках, аутосомно-рецессивных заболеваниях.

Когда необходим хромосомный микроматричный анализ

  • В качестве теста первой линии для диагностики пациентов с дизморфиями, врожденными пороками развития, умственной отсталостью/задержкой развития, множественными врожденными аномалиями, аутизмом, судорогами или любым подозрением на наличие геномного дисбаланса.
  • В качестве замены кариотипа, FISH и сравнительной геномной гибридизации, если подозревается микроделеционный/микродупликационный синдром.
  • В качестве исследования для выявления несбалансированных хромосомных аберраций.
  • В качестве дополнительного диагностического исследования при моногенных заболеваниях, связанных с функциональной потерей одного аллеля (гаплонедостаточностью), особенно если при секвенировании не удается выявить патогенную мутацию, и делеция всего гена может быть причиной.
  • Для определения происхождения генетического материала при однородительских дисомиях, дупликациях, делециях.

1 тест - 400 синдромов (список)

Введение в хромосомный микроматричный анализ.

Информация для врачей

Правила забора материала для хромосомного микроматричного анализа