Микозы

Лекция: Морфо-функциональная характеристика спинного мозга.

Нервную систему принято подразделять на несколько отделов. По топографическим признакам ее делят на центральный и периферический отделы, по функциональным признакам - на соматический и вегетативный отделы. Центральный отдел, или центральная нервная система, включает головной и спинной мозг. К периферическому отделу, или периферической нервной системе, относят все нервы, то есть все периферические проводящие пути, которые состоят из чувствительных и двигательных нервных волокон. Соматический отдел, или соматическая нервная система, включает черепномозговые и спинномозговые нервы, связывающие центральную нервную систему с органами, воспринимающими внешние раздражения - с кожным покровом и аппаратом движения. Вегетативный отдел, или вегетативная нервная система, обеспечивает связь центральной нервной системы со всеми внутренними органами, железами, сосудами и органами, в составе которых есть гладкая мышечная ткань. Вегетативный отдел делится на симпатическую и парасимпатическую части, или симпатическую и парасимпатическую нервную систему.

В состав центральной нервной системы входят головной и спинной мозг. Между массой головного и спинного мозга имеются определенные соотношения: по мере повышения организации животного увеличивается относительная масса головного мозга по сравнению со спинным. У птиц головной мозг в 1,5- 2,5 раза больше спинного, у копытных - в 2,5-3, у хищных-в 3,5-5, у приматов - в 8-15 раз.

Спинной мозг - medulla spinalis лежит в позвоночном канале, занимая примерно 2/3 его объема. У крупного рогатого скота и лошади его длина равна 1,8-2,3 м, масса 250- 300 г, у свиньи - 45-70 г. Он имеет вид цилиндрического тяжа, несколько сплюснутого дорсовентрально. Четкой границы между головным и спинным мозгом нет. Считается, что она проходит на уровне краниального края атланта. В спинном мозге различают шейную, грудную, поясничную, крестцовую и хвостовую части по месту их залегания. В эмбриональный период развития спинной мозг заполняет весь позвоночный канал, но в связи с большой скоростью роста скелета разница в их длине становится все больше. В результате мозг у крупного рогатого скота оканчивается на уровне 4-го, у свиньи - в области 6-го поясничного позвонка, а у лошади - в области 1-го сегмента крестцовой кости. Вдоль спинного мозга по его дорсальной стороне проходит срединная дорсальная борозда (желоб). От нее вглубь отходит соединительнотканная дорсальная перегородка. По бокам or срединной борозды идут более мелкие дорсальные латеральные борозды. По вентральной стороне идет глубокая срединная вентральная щель, а по бокам от нее - вентральные латеральные борозды (желоба). В конце спинной мозг резко сужается, обравуя мозговой конус, который переходит в концевую нить. Она образована соединительной тканью и оканчивается на уровне первых хвостовых позвонков.

В шейной и поясничной частях спинного мозга имеются утолщения. В связи с развитием конечностей в этих участках увеличивается количество нейронов и нервных волокон. У свиньи шейное утолщение сформировано 5-8-м нейросегментами. Его максимальная ширина на уровне середины 6-го шейного позвонка равна 10 мм. Поясничное утолщение приходится на 5-7-й поясничные нейросегменты. В каждом сегменте от спинного мозга отходит двумя корешками пара спинномозговых нервов - справа и слева. Дорсальный корешок отходит от дорсальной латеральной борозды, вентральный корешок - от вентральной латеральной борозды. Из позвоночного канала спинномозговые нервы выходят через межпозвоночные отверстия. Участок спинного мозга между двумя соседними спинномозговыми нервами называется нейросегментом. Нейросегменты бывают разной длины и часто по размерам не соответствуют длине костного сегмента. В результате спинномозговые нервы отходят под разным углом. Многие из них проходят некоторое расстояние внутри позвоночного канала до выхода из межпозвоночного отверстия своего сегмента. В каудальном направлении это расстояние увеличивается и из нервов, идущих внутри позвоночного канала, позади мозгового конуса образуется как бы кисточка, названная «конским хвостом».

Головной мозг - encephalon -помещается в черепномозговой коробке и состоит из несколыких частей. У копытных относительная масса головного мозга 0,08-0,3% от массы тела, что составляет у лошади 370-600 г, у крупного рогатого скота - 220-450, у овцы и свиньи - 96-150 г. У мелких животных относительная масса головного мозга обычно больше, чем у крупных.

Головной мозг копытных полуовальной формы. У жвачных - с широкой фронтальной плоскостью, с почти не выступающими обонятельными луковицами и заметными расширениями на уровне височных областей. У свиньи - более сужен впереди, с заметно выступающими обонятельными луковицами. Длина его составляет в среднем у крупного рогатого скота 15 см, у овцы - 10, у свиньи-11 см. Глубокой поперечной щелью головной, мозг делится на большой мозг, лежащий рострально, и ромбовидный мозг, расположенный каудальнее. Участки головного мозга филогенетически более древние, представляющие собой продолжение проекционных проводящих путей спинного мозга, называются стволом мозга. Он включает в себя продолговатый мозг, мозговой мост, средний мост, часть промежуточного мозга. Филогенетически более молодые части головного мозга образуют покровную часть мозга. В нее входят полушария головного мозга и мозжечок.

Ромбовидный мозг - rhombencephalon - делится на продолговатый и задний мозг и содержит четвертый мозговой желудочек.

Продолговатый мозг - medulla oblongata - самый задний участок головного мозга. Его масса составляет 10-11% массы мозга; длина у крупного рогатого скота - 4,5, у овцы - 3,7, у свиньи - 2 см. Имеет форму уплощенного конуса, основанием направленного вперед и примыкающего к мозговому мосту, а вершиной - к спинному мозгу, в который переходит без резких границ.

На его дорсальной стороне имеется углубление ромбовидной формы - четвертый мозговой желудочек. По вентральной стороне проходят три борозды: срединная и 2 боковых. Соединяясь каудально, они переходят в вентральную срединную щель спинного мозга. Между бороздами лежат 2 узких удлиненных валика - пирамиды, в которых проходят пучки двигательных нервных волокон. На границе продолговатого и спинного мозга пирамидные тракты перекрещиваются - образуется перекрест пирамид. В продолговатом мозге серое вещество расположено внутри, в дне четвертого мозгового желудочка в виде ядер, дающих начало черепномозговым нервам (с VI по XII пару), а также ядер, в которых происходит переключение импульсов на другие отделы головного мозга. Белое вещество лежит снаружи, преимущественно вентрально, формируя проводящие пути. Двигательные (эфферентные) проводящие пути из головного мозга в спинной формируют пирамиды. Чувствительные проводящие пути (афферентные) из спинного мозга в головной образуют/ задние ножки мозжечка, идущие из продолговатого мозга к мозжечку. В массе продолговатого мозга в виде сетчатого сплетения залегает важный координационный аппарат головного мозга - ретикулярная формация. Она объединяет структуры ствола мозга и способствует их вовлечению в сложные, многоступенчатые ответные реакции.

Продолговатый мозг - жизненно важный участок центральной нервной системы (ЦНС), его разрушение приводит к мгновенной смерти. Здесь расположены центры дыхания, сердцебиения, жевания, глотания, сосания, рвоты, жвачки, слюно- и сокоотделения, тонуса сосудов и др.

Задний мозг - metencephalon - состоит из мозжечка и мозгового моста.

Мозговой мост - pons - массивное утолщение на вентральной поверхности мозга, лежащее поперек передней части продолговатого мозга шириной до 3,5 см у крупного рогатого скота, 2,5 см у овцы и 1,8 ом у свиньи. Основную массу мозгового моста составляют проводящие пути (нисходящие и восходящие), соединяющие головной мозг со спинным и отдельные участки головного мозга между собой. Большое количество нервных волокон идет поперек моста к мозжечку и формирует средние ножки мозжечка. В мосте расположены группы ядер, в том числе ядра черепномозговых нервов (V пара). От боковой поверхности моста отходит самая крупная V пара черепномозговых нервов - тройничные.

Мозжечок - cerebellum - располагается над мостом, продолговатым мозгом и четвертым мозговым желудочком, позади четверохолмия. Спереди граничит с полушариями большого мозга. Масса его составляет 10-11% массы мозга. У овцы и свиньи длина его (4-4,5 см) больше высоты (2,2-2,7 ом), у крупного рогатого скота приближается к шаровидной - 5,6X6,4 см. В мозжечке различают среднюю часть - червячок и боковые части - полушария мозжечка. Мозжечок имеет 3 пары ножек. Задними ножками (веревчатыми телами) он соединен с продолговатым мозгом, средними с мозговым мостом, передними (ростральными) - со средним мозгом. Поверхность мозжечка собрана в многочисленные складчатые дольки и извилины, разделенные бороздами и щелями. Серое вещество в мозжечке расположено сверху - кора мозжечка и в глубине в виде ядер. Поверхность коры мозжечка у крупного рогатого скота составляет 130 см 2 (около 30% по отношению к коре больших полушарий) при толщине 450-700 мкм. Белое вещество расположено под корой и имеет вид ветки дерева, за что названо древом жизни.

Мозжечок является центром координации произвольных движений, поддержания тонуса мышц, позы, равновесия.

Ромбовидный мозг содержит четвертый мозговой желудочек. Его дном является углубление продолговатого мозга - ромбовидная ямка. Его стенки образованы ножками мозжечка, а крыша передним (ростральным) и задним мозговыми парусами, которые являются сосудистым сплетением. Желудочек сообщается рострально с мозговым водопроводом, каудально - с центральным каналом спинного мозга и через отверстия в парусе - с подпаутинным пространством.

Большой мозг - cerebrum - включает в себя конечный, промежуточный и средний мозг. Конечный и промежуточный мозг объединены в передний мозг.

Средний мозг - mesencephalon - состоит из четверохолмия, ножек большого мозга и заключенного между ними мозгового водопровода. Прикрыт большими полушариями. Его масса составляет 5-6% от массы мозга.

Четверохолмие образует крышу среднего мозга. Оно состоит из пары ростральных (передних) холмиков и пары каудальных (задних) холмиков. Четверохолмие является центром безусловно-рефлекторных двигательных актов в ответ на зрительные и слуховые раздражения. Передние холмики считаются подкорковыми центрами зрительного анализатора, задние холмики- подкорковыми центрами слухового анализатора. У жвачных передние холмики крупнее задних, у свиньи - наоборот.

Ножки большого мозга образуют дно среднего Мозга. Имеют вид двух толстых валиков, лежащих между зрительными трактами и мозговым мостом. Разделены межножковой бороздой.

Между четверохолмием и ножками большого мозга в виде узкой трубки проходит мозговой (сильвиев) водопровод. Рострально он соединяется с третьим, каудально - с четвертым мозговыми желудочками. Мозговой водопровод окружен веществом ретикулярной формации.

В среднем мозге белое вещество расположено снаружи и представляет собой проводящие афферентные и эфферентные пути. Серое вещество расположено в глубине в виде ядер. От мозговых ножек отходит III пара черепномозговых нервов.

Промежуточный мозг - diencephalon - состоит из зрительных бугров - таламуса, надбугорья - эпиталамуса, подбугорья - гипоталамуса. Расположен промежуточный мозг между конечным.

У средним мозгом, прикрыт конечным мозгом. Его масса составляет 8-9% от массы мозга. Зрительные бугры - наиболее массивная, центрально расположенная часть промежуточного мозга. Срастаясь между сабой, они сдавливают третий мозговой желудочек так, что он принимает форму кольца, идущего вокруг промежуточной массы зрительных бугров. Сверху желудочек прикрыт сосудистой покрышкой; сообщается межжелудочковым отверстием с боковыми желудочками, аборально переходит в мозговой водопровод. Белое вещество в таламусе лежит сверху, серое - внутри в виде многочисленных ядер. Они служат переключательными звеньями с нижележащих отделов на кору и связаны почти со всеми анализаторами. На базальной поверхности промежуточного мозга расположен перекрест зрительных нервов - хиазма.

Эпиталамус состоит из нескольких структур, в том числе эпифиза и сосудистой покрышки третьего мозгового желудочка (эпифиз - железа внутренней секреции). Расположен в углублении между зрительными буграми и четверохолмием.

Гипоталамус расположен на базальной поверхности промежуточного мозга между хиазмой и ножками мозга. Состоит из нескольких частей. Непосредственно позади хиазмы в виде овального бугорка - серый бугор. Его обращенная вниз верхушка вытянута за счет выпячивания стенки третьего желудочка и образует воронку, на которой подвешен гипофиз - железа внутренней секреции. Позади серого бугра небольшое округлое образование- сосцевидное тело. Белое вещество в гипоталамусе расположено снаружи, формирует проводящие афферентные и эфферентные пути. Серое вещество - в виде многочисленных ядер, так как гипоталамус является высшим подкорковым вегетативным центром. Он содержит центры дыхания, крово- и лимфообращения, температуры, половых функций и др.

Конечный мозг - telencephalon - образован двумя полушариями, разделенными глубокой продольной щелью и соединенными мозолистым телом. Его масса у (крупного рогатого скота 250-300 г, у овцы и свиньи 60-80 г, что составляет 62-66% от массы головного мозга. В каждом полушарии различают дор-солатерально расположенный плащ, вентромедиально - обонятельный мозг, в глубине - полосатое тело и боковой желудочек. Баковые желудочки разделены прозрачной перегородкой. С третьим мозговым желудочком сообщаются межжелудочковым отверстием.

Обонятельный мозг состоит из нескольких частей, заметных на вентральной поверхности конечного мозга. Рострально, несколько выступая за пределы плаща, лежат 2 обонятельные луковицы. Они занимают ямки решетчатой кости. Через отверстие в продырявленной пластинке кости в них вступают обонятельные нити, которые в сумме образуют обонятельный нерв. Луковицы являются первичными обонятельными центрами. От них отходят обонятельные тракты - афферентные проводящие пути. Латеральный обонятельный тракт доходит до грушевидяых долей, расположенных латерально от ножек мозга. Медиальные обонятельные тракты достигают медиальной поверхности плаща. Между трактами лежат обонятельные треугольники. Грушевидные доли и обонятельные треугольники - это вторичные обонятельные центры. В глубине обонятельного мозга, на дне боковых желудочков, расположены остальные части обонятельного мозга. Они связывают обонятельный мозг с другими отделами мозга. Полосатое тело расположено в глубине полушарий и представляет собой базальный комплекс ядер, являющихся подкорковыми двигательными центрами.

Плащ достигает наибольшего развития у высших млекопитающих. В нем находятся высшие центры всей жизнедеятельности животного. Поверхность плаща покрыта извилинами и бороздами. У крупного рогатого скота его поверхность равна 600 см 2 . Серое вещество в плаще расположено сверху - это кора больших полушарий. Белое вещество находится внутри - это проводящие пути. Функции различных участков коры неравнозначны, строение отличается мозаичностью, что дало возможность выделить в полушариях несколько долей (лобную, теменную, височную, затылочную) и несколько десятков полей. Поля отличаются друг от друга своей цитоархитектоникой - расположением, количеством и формой клеток и миелоархитектоникой - расположением, количеством и формой волокон.

Оболочки мозга -meninges. Спинной и головной мозг одевают твердая, паутинная и мягкая оболочки.

Твердая оболочка - самая поверхностная, толстая, образована плотной соединительной тканью, бедна сосудами. С костями черепа и позвонками срастается связками, складками и другими образованиями. Она опускается в продольную щель между полушариями большого мозга о виде серповидной связки (серп большого мозга) и отделяет большой мозг от ромбовидного перепончатым наметом мозжечка. Между нею и костями имеется не везде развитое эпидуральное пространство, заполненное рыхлой соединительной и жировой тканями. Здесь проходят вены. Изнутри твердая мозговая оболочка выстлана зндотелием. Между нею и паутинной оболочкой есть субдуральмое пространство, заполненное спинномозговой жидкостью. Паутинная оболочка - образована рыхлой соединительной тканью, нежная, бессосудистая, в борозды не заходит. С обеих сторон покрыта эндотелием и отделена субдуральньф и яубарахноидальным (подпаутинным) пространствами от других оболочек. Присоединяется к оболочкам с помощью связок, а также сосудов и нервов, проходящих через нее.

Мягкая оболочка - тонкая, но плотная, с большим количествам сосудов, за что ее называют также сосудистой. Заходит во все борозды и щели головного и спинного мозга, а также в мозговые желудочки, где формирует сосудистые покрышки.

Межоболочечные пространства, мозговые желудочки и центральный спинномозговой канал заполнены спинномозговой жидкостью, которая является внутренней средой мозга и предохраняет его от вредных воздействий, регулирует внутричерепное „давление, выполняет защитную функцию. Образуется жидкость. В основном в сосудистых покрышках желудочков, оттекает в венозное русло. В норме ее количество постоянно.

Сосуды головного и спинного мозга. Спинной мозг снабжается кровью по ветвям, отходящим от позвоночных, межребергаых, поясничных и крестцовых артерий. В позвоночном канале они формируют спинномозговые артерии, идущие в бороздах и центральной щели спинного мозга. К головному мозгу кровь подходит по позвоночным и внутренним сонным (у рогатого скота - по внутренним челюстным) артериям.

Существует множество работ, посвященных структурно-функциональным изменениям нервной системы при воздействии факторов внешней среды. Как и в других областях знания, результаты этих исследований крайне разноречивы, что связано, в частности, с особенностями организации мозга, которая носит ярко выраженный индивидуальный характер . Для более четкого установления путей структурно-функциональной перестройки этой исключительно сложно организованной системы необходимы экспериментальные модели, сопоставимые в плане влияния на кардинальные пути адаптации изучаемых структур.

Цель исследования заключалась в выявлении диапазона адаптивных морфологических изменений элементов пирамидной, экстрапирамидной систем и сегментарного аппарата мозга при правосторонней перевязке внутренней сонной артерии.

Материал и методы исследования.

Работа произведена на 36 беспородных собаках-самцах, из которых 26 были интактными. 10 животным экспериментально моделировали ишемию посредством односторонней перевязки внутренней сонной артерии. Исследования проводились в соответствии с приказами Минвуза СССР № 742 от 13.11.84 «Об утверждении правил проведения работ с использованием экспериментальных животных» и № 48 от 23.01.85 «О контроле за проведением работ с использованием экспериментальных животных».

В работе были использованы интактные животные (26) и собаки с правосторонней перевязкой внутренней сонной артерии (10).

После выполнения эксперимента животному внутривенно вводили 10% раствор тиопентала натрия (из расчета 0,5 мл на кг массы тела). Взятие материала проводили через 30 минут после остановки сердца. При помощи безопасной бритвы извлекали кору головного мозга (поле Prc1), участок среднего мозга на уровне верхнего двухолмия и четвертый поясничный сегмент спинного мозга. Каждый из отделов разлагали на 3 кусочка. Первый кусочек помещали в 12% раствор формалина для дальнейшей заливки в блоки. Второй кусочек замораживали в охлажденном до -70° жидким азотом изооктане и после изготовления криостатных срезов инкубировали в средах для выявления ферментов. Последний кусочек использовали для электронномикроскопического исследования. Специально заточенной иглой для инъекций диаметром 1,0 мм пунктировали кору, крупноклеточную часть красного ядра (КЯ) и передний рог спинного мозга. Полученный при пункции столбик серого вещества помещали в глутаралдегид.

Результаты исследования и их обсуждение. Одна из особенностей нашей работы заключалась в том, что интактные животные рассматривались не только как контроль, а как полноценная экспериментальная группа. Отсюда и такое большое число собак, составивших ее (26 особей). Это позволило с большей точностью оценить диапазон колебаний важнейших структурно-функциональных показателей элементов ЦНС собак, находящихся в одинаковых условиях и не подвергавшихся экспериментальным воздействиям. Эти показатели сильно варьировали по величине. Так, число клеток с перинуклеарным хроматолизом колебалось у мотонейронов спинного мозга от 4 до 20%, у интернейронов - от 0 до 8%. В крупноклеточной части КЯ колебания этого показателя составили от 4 до 16%, в моторной коре - от 0 до 16%.

Большое количество абсолютных и относительных морфометрических показателей, полученных нами, имело целью рассмотреть особенности неврологической конституции интактных животных. Почти все эти показатели сильно варьировали. Особенно велики были колебания объемов нервных клеток, их ядер, ядер глиальных клеток и глиального индекса. У мотонейронов спинного мозга показатель глиального индекса варьировал от 1,08 до 2,24, в моторной коре - от 1,44 до 3,00. Коэффициент элонгации двигательного нейрона спинного мозга колебался от 1,52 до 2,13, промежуточного - от 1,42 до 2,19, пирамидного нейрона V слоя моторной коры - от 2,70 до 3,26.

На электронномикроскопическом уровне обнаружен полиморфизм ядер и структур цитоплазмы нервных и глиальных клеток, свидетельствующий о разной организации ультраструктур интактного организма.

Воздействие экспериментальной ишемии приводит к характерным изменениям элементов ЦНС. При небольшом количестве клеток с перинуклеарным хроматолизом (в КЯ и моторной коре таких клеток даже меньше, чем у интактных собак), отмечено большее число нейронов, характеризующихся равномерным и тотальным хроматолизом. Так, среди двигательных клеток спинного мозга количество нейронов с тотальным хроматолизом достигает у отдельных собак 12%, в крупноклеточной части КЯ - 16%, в моторной коре - 20%. Такое значительное число клеток коры с тотальным хроматолизом является, по-видимому, одним из морфофункциональных эквивалентов экспериментальной ишемии. Характерно также, что тотальный хроматолиз чаще отмечается в относительно мелких клетках, что скорей всего связано с особенностями их кровоснабжения и метаболизма.

Наряду с этим нельзя не подчеркнуть, что число нормохромных нейронов очень вариабельно и в моторной коре у отдельных собак колеблется от 32 до 68%. Таким образом, адаптация моторной коры к гипоксии носит выраженный индивидуальный характер. Этот факт отмечен и предыдущими исследованиями .

Воздействие экспериментальной ишемии приводит к разнонаправленной динамике объемов нервных клеток в различных отделах ЦНС. Так, объемы двигательных клеток спинного мозга и моторной коры достоверно больше, чем у интактных собак (на 16,5% и 10,5% соответственно, р 0,05), а в КЯ отмечены достоверно меньшие значения этого показателя (на 15,9%, р

Показатель оптической плотности продукта реакции сукцинатдегидрогеназы (СДГ) по сравнению с интактной группой имеет тенденцию к уменьшению, но только в мелкоклеточной части КЯ и в III слое коры отличия оказались достоверными.

Выраженная чувствительность нейронов III слоя к гипоксии отмечена многими авторами, связывающими ее с максимальным уровнем кровоснабжения этого афферентного слоя, на котором конвергируют аксоны вентролатерального ядра талямуса . Гистоэнзиматическая неоднородность нейронов детально изучалась нами в предыдущих исследованиях как в спинном, так и в головном мозге . Типологический анализ выявил меньшую долю «окислительных» клеток в спинном мозге, обеих частях КЯ и во всех слоях коры, кроме V, причем в VI слое их было меньше всего.

Гистоэнзиматический профиль различных нейронных ансамблей, основанный на оптической плотности СДГ, обусловлен разным характером реагирования нервных клеток на дефицит кислородного снабжения.

Ультраструктурные изменения элементов спинного мозга были минимальны, а в нейронах головного мозга

найдено уменьшение числа рибосом и полисом, свидетельствующее о снижении белоксинтетической активности. Аналогичные выводы сделаны на основании комплексных радиоавтографических исследований с применением меченых атомов глюкозы, метионина и уридина . В сателлитах нейронов крупноклеточной части КЯ обнаружена выраженная инвагинация ядерной мембраны, что свидетельствует об усилении биосинтетических процессов . В сателлитах моторной коры обнаружено эксцентричное расположение ядер, в редких случаях фрагментация, извилистость кариолеммы. Известно, что именно олигодендроглия особенно чувствительна к гипоксии, в то время как астроциты проявляют относительную устойчивость к этому фактору . Снижение количества синаптических пузырьков и их агглютинация, а также наличие мембранных включений в пресинаптических отростках свидетельствуют о нарушении проведения нервного импульса, что, по мнению большинства авторов, связано с деполяризацией синаптических мембран, возникающей вследствие повышения внутриклеточной концентрации ионов кальция при гипоксии . Это состояние является обратимым . Предполагается также, что редукция синапсов является одним из ранних механизмов переключения нейронов на уровни взаимодействия, адекватные гипоксическому воздействию .

Появление мембранных включений указывает на глубокую деструкцию отростка и перестройку его липопротеинового комплекса, связанную со снижением синтеза биогенных аминов и фосфолипидов, а также снижением активности окислительных ферментов, в частности, цитохромоксидазы и моноаминоксидазы . Повреждение липидных комплексов приводит к дальнейшему нарушению ионных каналов и изменению содержания в нейроне ионов кальция, калия, натрия и хлора .

Таким образом, воздействие экспериментальной ишемии свидетельствует о значительных изменениях структурно-функционального состояния различных отделов мозга, среди которых преобладают серьезные нарушения окислительного обмена и белоксинтетического аппарата нейрона.

Список литературы

1. Абушов А.М., Сафаров М.И., Меликов Э.М. Влияние гаммалона на ультраструктуру нейронов различных образований головного мозга // Макро- и микроуровни организации мозга. - М: Ин-т Мозга РАМН, 1992. - С.6.

2. боголепова И.Н., Малофеева Л.И. Возрастные изменения нейроно-глиальных соотношений в речедвигательной зоне коры мозга пожилых мужчин//Морфологические ведомости, 2014, в.2, с. 13-18.

3. Воробьева Т.В., Яковлева Н.И. Ультраструктурные изменения синапсов сенсомоторной области коры мозга при гипоксии // Принципы организации центральных механизмов двигательных функций. - М.: Ин-т Мозга ВНЦПЗ АМН СССР. - 1979. - С.15-19.

4. Гусев Е.И., Бурд Г.С., Боголепов Н.Н. и др. Изменения в ЦНС в раннем постишемическом периоде и возможность их фармакологической коррекции // Актуальные вопросы фундаментальной и прикладной медицинской морфологии. - Смоленск: Изд-во Смоленск. мед. ин-та. - 1994. - С. 44.

9. Шаврин В.А., Туманский В.А., Полковников Ю.Ф. Реакция нейронов и глиальных клеток коры большого мозга в ответ на дефицит кровотока и водную нагрузку по данным электронно-микроскопической радиоавтографии D-глюкозы-3Н, D,L-метионина-3Н и уридина-3Н//«Морфология»-Киев: Здоров’я,1986.- вып.10.-С.6-10.

10. Эрастов Е.Р. Гистохимическая организация нейронов спинного мозга. // Морфология, 1998, т.113, в.3, с.136-137.

11. Эрастов Е.Р. Кора больших полушарий. Н.Новгород, Изд-во НГМА, - 2000. - 16 с.

12. Эрастов Е.Р. Морфофункциональная перестройка элементов нервной системы при воздействии различных факторов внешней среды. //Аспекты адаптации. Критерии индивидуальных адаптаций. Закономерности и управление. Н.Новгород, Изд-во НГМА, 2001. -С.152-160.

13. Chalmers G.R., Edgerton V.R. Single motoneuron succinate dehydrogenase activity//J.Histochem.Cytochem.,1989.-Vol.37.- P.1107-1114. 245.

14. Farkas-Bargeton E., Diebler M.F. A topographical study of enzyme maturation in human cerebral neocortex: a histochemical fn biochemical study// Architectonics of cerebral cortex. - New York,1978. - P.175-190.

15. Gajkowska B., Mossakowski M.J. Calcium accumulation in synapses of the rat hippocampus after cerebral ischemia // Neuropat. Pot. - 1992. - V. 30. - ¹2. - P. 111- 125.

16. Hong S.C., Lanzino G., Moto G. et al. Calcium-activated proteolysis in rat neocortex induced by transient focal ischemia // Brain Res. - 1994.- V. 661. - P. 43-50.

17. Regehr W.G, Tank D.W. Dendritic calcium dynamics. // Curr. Opin. Neurobiol. - 1994. - Vol. 4. - P. 373-382.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди - глубокой срединной щелью, а сзади - срединной бороздой. Спинной мозг характеризуется сегментарным строением; с каждым сегментом связана пара передних (вентральных) и пара задних (дорсальных) корешков.

В спинном мозге различают серое вещество, расположенное в центральной части, и белое вещество, лежащее по периферии.

Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых нервных волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются трактами, или проводящими путями, спинного мозга.

Серое вещество на поперечном разрезе имеет вид бабочки и включает передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В сером веществе находятся тела, дендриты и (частично) аксоны нейронов, а также глиальные клетки. Основной составной частью серого вещества являются мультиполярные нейроны.

Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами.

Аксоны корешковых клеток покидают спинной мозг в составе его передних корешков. Отростки внутренних клеток заканчиваются синапсами в пределах серого вещества спинного мозга. Аксоны пучковых клеток проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии.

В задних рогах различают губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро Кларка. Между задними и боковыми рогами серое вещество вдается тяжами в белое, вследствие чего образуется его сетеобразное разрыхление, получившее название сетчатого образования, или ретикулярной формации, спинного мозга.

Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки).

Нейроны губчатой зоны и желатинозного вещества осуществляют связь между чувствительными клетками спинальных ганглиев и двигательными клетками передних рогов, замыкая местные рефлекторные дуги.

Нейроны ядра Кларка получают информацию от рецепторов мышц, сухожилий и суставов (проприоцептивная чувствительность) по самым толстым корешковым волокнам и передают ее в мозжечок.

В промежуточной зоне расположены центры вегетативной (автономной) нервной системы - преганглионарные холинергические нейроны ее симпатического и парасимпатического отделов.

В передних рогах расположены самые крупные нейроны спинного мозга, которые образуют значительные по объему ядра. Это так же, как и нейроны ядер боковых рогов, корешковые клетки, поскольку их нейриты составляют основную массу волокон передних корешков. В составе смешанных спинномозговых нервов они поступают на периферию и образуют моторные окончания в скелетной мускулатуре. Таким образом, ядра передних рогов представляют собой моторные соматические центры.

Спинной мозг - наиболее древнее образование центральной нервной системы; он впервые появляется у ланцетника

Характерной чертой организации спинного мозга является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.

Спинной мозг человека имеет 31-33 сегмента: 8 шейных, 12 грудных, 5 поясничных,5 крестцовых 1-3 копчиковых.

Морфологических границ между сегментами спинного мозга не существует. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.

Задние корешки являются афферентными, чувствительными, центростремительными, а передние - эфферентными, двигательными, центробежными (закон Белла-Мажанди).

Афферентные входы в спинной мозг организованы аксонами спинальных ганглиев, лежащих вне спинного мозга, и аксонами симпатического и парасимпатического отделов вегетативной нервной системы.

Первая группа афферентных входов спинного мозга образована чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов. Эта группа рецепторов образует начало так называемой проприоцептивной чувствительности.

Вторая группа афферентных входов спинного мозга начинается от кожных рецепторов: болевых, температурных, тактильных, давления.

Третья группа афферентных входов спинного мозга представлена волокнами от висцеральных органов, это висцеро-рецептивная система.

Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру.

Особенности нейронной организации спинного мозга

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов. ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога.

Задние рога выполняют главным образом сенсорные функции, от них передаются сигналы в вышележащие центры, в структуры противоположной стороны, либо к передним рогам спинного мозга.

В передних рогах находятся нейроны, дающие свои аксоны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

В боковых рогах, начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, располагаются нейроны симпатического, а в крестцовых - парасимпатического отдела вегетативной нервной системы.

Спинной мозг человека содержит около 13 млн. нейронов, из них 3% - мотонейроны, а 97% - вставочные. Функционально нейроны спинного мозга можно разделить на 4 основные группы:

1) мотонейроны, или двигательные, - клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны - нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4) ассоциативные клетки - нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1-2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга - эта сеть образует так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.Средняя часть серого вещества спинного мозга содержит преимущественно короткоаксонные веретенообразные клетки они выполняют связующую функцию между симметричными отделами сегмента, между клетками его передних и задних рогов.

Мотонейроны. Аксон мотонейрона своими терминалями иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздражения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение. Мотонейроны могут генерировать импульсы с частотой до 200 в секунду.

Интернейроны. Эти промежуточные нейроны, генерирующие импульсы с частотой до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функцией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения. Возбуждение интернейронов, связанных с моторными клетками, оказывает тормозящее влияние на мышцы-антагонисты.

Нейроны симпатического отдела вегетативной нервной системы расположены в боковых рогах грудного отдела спинного мозга, имеют редкую частоту импульсации (3-5 в секунду), парасимпатические нейроны локализуются в сакральном отделе спинного мозга.

При раздражении или поражениях задних корешков наблюдаются опоясывающие боли на уровне метамера пораженного сегмента, снижается чувствительность, исчезают или ослабляются рефлексы. Если происходит изолированное поражение заднего рога, утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняются, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной - прямо в задний столб и по проводящим путям поднимаются вверх.

Поражение переднего рога и переднего корешка спинного мозга приводит к параличу мышц, которые теряют тонус, атрофируются, при этом исчезают рефлексы, связанные с пораженным сегментом.

Поражение боковых рогов спинного мозга сопровождается исчезновением кожных сосудистых рефлексов, нарушением потоотделения, трофическими изменениями кожи, ногтей. Двустороннее поражение парасимпатического отдела на уровне крестцов приводит к нарушению дефекации и мочеиспускания.