Микозы

Михаил Ингерлейб. Все дыхательные гимнастики

Эластичность - есть мера упругости легочной ткани . Чем больше эластичность ткани, тем больше давления требуется приложить для достижения заданного изменения объема легких. Эластическая тяга легких возникает благодаря высокому содержанию в них эластиновых и коллагенновых волокон. Эластин и коллаген находятся в альвеолярных стенках вокруг бронхов и кровеносных сосудов. Возможно, упругость легких обусловлена не столько удлинением этих волокон, сколько изменением их геометрического расположения, как это наблюдается при растяжении нейлоновой ткани: хотя нити сами по себе не изменяют длины, ткань легко растягивается благодаря их особому переплетению.

Определенная доля эластической тяги легких обусловлена также действием сил поверхностного натяжения на границе "газ-жидкость" в альвеолах. Поверхностное натяжение - это сила, возникающая на поверхности, разделяющей жидкость и газ. Она обусловлена тем, что межмолекулярное сцепление внутри жидкости гораздо сильнее, чем силы сцепления между молекулами жидкой и газовой фазы. В результате этого площадь поверхности жидкой фазы становится минимальной. Силы поверхностного натяжения в легких взаимодействуют с естественной эластической отдачей, обеспечивая спадение альвеол.

Специальное вещество (сурфактант ), состоящее из фосфолипидов и протеинов и выстилающее альвеолярную поверхность, снижает внутриальвеолярное поверхностное натяжение. Сурфактант секретируется альвеолярными эпителиальными клетками II типа и выполняет несколько важных физиологических функций. Во-первых, понижая поверхностное натяжение, он увеличивает растяжимость легкого (уменьшает упругость). Тем самым уменьшается совершаемая при вдохе работа. Во-вторых, обеспечивается стабильность альвеол. Давление, создаваемое силами поверхностного натяжения в пузырьке (альвеоле), обратно пропорционально его радиусу, поэтому при одинаковом поверхностном натяжении в мелких пузырьках (альвеолах), оно больше, чем в крупных. Эти силы также подчиняются закону Лапласа, упомянутому ранее (1), с некоторой модификацией: «Т» - поверхностное натяжение, а «r» - радиус пузырька.

В отсутствие природного детергента мелкие альвеолы стремились бы перекачать свой воздух в более крупные. Поскольку при изменении диаметра меняется слойная структура сурфактанта, его эффект в отношении снижения сил поверхностного натяжения проявляется тем больше, чем меньше диаметр альвеол. Последнее обстоятельство сглаживает эффект меньшего радиуса кривизны и увеличенного давления. Тем самым предотвращается спадение альвеол и появление ателектазов на выдохе (диаметр альвеол минимален), а также перемещение воздуха из меньших альвеол внутрь больших альвеол (за счет выравнивания сил поверхностного натяжения в альвеолах разного диаметра).

Респираторный дистресс-синдром новорожденных характеризуется дефицитом нормального сурфактанта. У больных детей легкие становятся ригидными, неподатливыми, склонными к коллапсу. Дефицит сурфактанта имеется и при респираторном дистресс-синдроме взрослых, однако, его роль в развитии этого варианта дыхательной недостаточности менее очевидна.

Давление, создаваемое эластической паренхимой легкого называется давлением эластической отдачи (Pel) . В качестве меры эластической тяги обычно используют растяжимость (С - от англ. complianсе), которая находится в реципрокном отношении к эластичности:

С = 1/Е = ДV/ДP

Растяжимость (изменение объема на единицу давления) отражается наклоном кривой «объем-давление». Подобные различия между прямым и обратным процессом называются гистерезисом. Кроме того, видно, что кривые не исходят из начала координат. Это указывает на то, что легкое содержит небольшой, но измеримый объем газа даже тогда, когда на него не действует растягивающее давление.

Растяжимость обычно измеряется в статических условиях (Сstat), т. е. в состоянии равновесия или, другими словами, в отсутствии движения газа в дыхательных путях. Динамическая растяжимость (Cdyn), которую измеряют на фоне ритмичного дыхания, зависит еще и от сопротивления дыхательных путей. На практике Сdyn измеряется по наклону линии, проведенной между точками начала вдоха и выдоха на кривой «динамическое давление-объем».

В физиологических условиях статическая растяжимость легких человека при небольшом давлении (5-10 см Н 2 О) достигает примерно 200 мл/см вод. ст. При более высоких давлениях (объемах) она, однако, уменьшается. Этому соответствует более пологий участок кривой «давление--объем». Растяжимость легких несколько снижается при альвеолярном отеке и коллапсе, при повышении давления в легочных венах и переполнении легких кровью, при увеличении объема внесосудистой жидкости, наличии воспаления или фиброзе. При эмфиземе легких растяжимость возрастает, как считают, за счет утраты или перестройки эластических составляющих легочной ткани.

Поскольку изменения давления и объема нелинейны, для оценки упругих свойств легочной ткани часто используют «нормализованную» растяжимость, отнесенную к единице объема легких - удельную растяжимость. Она рассчитывается делением статической растяжимости на объем легких, при котором она измеряется. В клинике статическую растяжимость легких измеряют, получая кривую давление-объем при изменениях объема на 500 мл от уровня функциональной остаточной емкости легких (ФОЕ).

Растяжимость грудной клетки в норме составляет около 200 мл/см вод. ст. Эластическая тяга грудной клетки объясняется наличием структурных компонентов, противодействующих деформации, возможно, мышечным тонусом грудной стенки. Вследствие наличия эластических свойств, грудная клетка в состоянии покоя имеет тенденцию к расширению, а легкие - к спадению, т.е. на уровне функциональной остаточной емкости легких (ФОЕ) эластическая отдача легкого, направленная внутрь, уравновешивается эластической отдачей грудной стенки, направленной наружу. По мере того как объем грудной полости от уровня ФОЕ расширяется до уровня ее максимального объема (общая емкость легких, ОЕЛ), направленная наружу отдача грудной стенки снижается. При уровне 60% жизненной емкости легких, измеряемой на вдохе (максимальное количество воздуха, которое можно вдохнуть, начиная с уровня остаточного объема легких), отдача грудной клетки падает до нуля. При дальнейшем расширении грудной клетки отдача ее стенки направляется внутрь. Большое количество клинических нарушений, включая выраженное ожирение, обширный плевральный фиброз и кифоскалиоз, характеризуются изменениями растяжимости грудной клетки.

В клинической практике обычно оценивается общая растяжимость легких и грудной клетки (С общая). В норме она составляет около 0,1 см/вод. ст. и описывается следующим уравнением:

1/С общая = 1/С грудной клетки + 1/ С легких

Именно этот показатель отражает давление, которое должно быть создано дыхательными мышцами (или аппаратом ИВЛ) в системе для преодоления статической эластической отдачи легких и грудной стенки при различных объемах легкого. В горизонтальном положении растяжимость грудной клетки уменьшается из-за давления органов брюшной полости на диафрагму.

При движении смеси газов по дыхательным путям возникает дополнительное сопротивление, называемое обычно неэластическим. Неэластическое сопротивление обусловлено в основном (70%) аэродинамическим (трение воздушной струи о стенки дыхательных путей), и в меньшей степени вязкостным (или деформационным, связанным с перемещением тканей при движении легких и грудной клетки) компонентами. Доля вязкостного сопротивления может заметно возрастать при значительном увеличении дыхательного объема. Наконец, незначительную долю составляет инерционное сопротивление, оказываемое массой легочных тканей и газа при возникающих ускорениях и замедлениях скорости дыхания. Весьма малое в обычных условиях, это сопротивление может возрастать при частом дыхании или даже стать главным при ИВЛ с высокой частотой дыхательных циклов.

Величину растяжения легких в ответ на каждую единицу увеличения транспульмонального давления (если для достижения равновесия имеется достаточно времени) называют растяжимостью легких. У здорового взрослого человека общая растяжимость обоих легких составляет примерно 200 мл воздуха на 1 см вод. ст. трансмурального давления. Таким образом, каждый раз, когда транспульмональное давление увеличивается на 1 см вод. ст., через 10-20 сек объем легких увеличивается на 200 мл.

Диаграмма растяжимости легких . На рисунке показана диаграмма соотношения изменений объема легких и изменений транспульмонального давления. Обратите внимание, что эти соотношения во время вдоха отличаются от таковых во время выдоха. Каждая кривая регистрируется при изменении транспульмонального давления на небольшую величину после установления объема легких на постоянном уровне. Эти две кривые называют, соответственно, кривой инспираторной растяжимости и кривой экспираторной растяжимости, а всю диаграмму - диаграммой растяжимости легких.

Характер кривой растяжимости определяется главным образом эластическими свойствами легких. Эластические свойства можно разделить на две группы: (1) эластические силы самой легочной ткани; (2) эластические силы, вызванные поверхностным натяжением слоя жидкости на внутренней поверхности стенок альвеол и других дыхательных путей легких.

Эластическая тяга легочной ткани определяется главным образом волокнами эластина и коллагена, вплетенными в паренхиму легких. В спавшихся легких эти волокна находятся в эластически сокращенном и скрученном состоянии, но когда легкие расширяются, они растягиваются и расправляются, при этом удлиняются и развивают все большую эластическую тягу.

Вызванные поверхностным натяжением эластические силы являются намного более сложными. Значение поверхностного натяжения показано на рисунке, где сравниваются диаграммы растяжимости легких в случаях наполнения их солевым раствором и воздухом. При наполнении легких воздухом в альвеолах существует поверхность раздела между альвеолярной жидкостью и воздухом. В случае наполнения легких солевым раствором такой поверхности нет и поэтому отсутствует влияние поверхностного натяжения - в наполненных солевым раствором легких действуют только эластические силы ткани.

Для растяжения наполненных воздухом легких потребуются трансплевральные давления, примерно в 3 раза превышающие необходимые для расширения наполненных солевым раствором легких. Можно сделать вывод, что величина тканевых эластических сил, обусловливающих спадение наполненных воздухом легких, составляет только около 1/3 всей эластичности легких, в то время как поверхностное натяжение на границе слоев жидкости и воздуха в альвеолах создает оставшиеся 2/3.

Эластические силы , обусловленные поверхностным натяжением на границе слоев жидкости и воздуха, значительно увеличиваются, когда в альвеолярной жидкости отсутствует определенное вещество - сурфактант. Теперь обсудим действия этого вещества и его влияние на силы поверхностного натяжения.

Вернуться в оглавление раздела " "

Поддержание постоянства состава альвеолярного воздуха обеспечивается за счет непрерывно осуществляемых дыхательных циклов — вдоха и выдоха. Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе примерно такой же объем воздуха вытесняется из легких. За счет обновления части альвеолярного воздуха поддерживается его постоянный .

Акт вдоха совершается вследствие увеличения объема грудной полости за счет сокращения наружных косых межреберных мышц и других вдыхательных мышц, обеспечивающих отведение ребер в стороны, а также благодаря сокращению диафрагмы, что сопровождается изменением формы ее купола. Диафрагма становится конусовидной, положение сухожильного центра не изменяется, а мышечные участки смещаются в сторону брюшной полости, оттесняя органы назад. При увеличении объема грудной клетки давление в плевральной щели уменьшается, возникает разница между давлением атмосферного воздуха на внутреннюю стенку легких и давлением воздуха в плевральной полости на наружную стенку легких. Давление атмосферного воздуха на внутреннюю стенку легких начинает преобладать и вызывает увеличение объема легких, а следовательно, и поступление атмосферного воздуха в легкие.

Таблица 1. Мышцы, обеспечивающие вентиляцию легкого

Примечание. Принадлежность мышц к основным и вспомогательным группам может меняться в зависимости от типа дыхания.

Когда вдох окончен и дыхательные мышцы расслабляются, ребра и купол диафрагмы возвращаются в положение до вдоха, при этом уменьшается объем грудной клетки, повышается давление в плевральной щели, возрастает давление на наружную поверхность легких, часть альвеолярного воздуха вытесняется и происходит выдох.

Возвращение ребер в положение до вдоха обеспечивается эластическим сопротивлением реберных хрящей, сокращением внутренних косых межреберных мышц, вентральных зубчатых мышц, мышц живота. Диафрагма возвращается в положение до вдоха благодаря сопротивлению стенок живота, органов брюшной полости, смешенных при вдохе назад, и сокращению мышц живота.

Механизм вдоха и выдоха. Дыхательный цикл

Дыхательный цикл включает вдох, выдох и паузу между ними. Его длительность зависит от частоты дыхания и составляет 2,5-7 с. Продолжительность вдоха у большинства людей короче продолжительности выдоха. Длительность паузы очень изменчива, она может отсутствовать между вдохом и выдохом.

Для инициирования вдоха необходимо, чтобы в инспираторном (активирующем вдох) отделе в возник залп нервных импульсов и их посылка по нисходящим путям в составе вентрального и передней части бокового канатиков белого вещества спинного мозга в его шейный и грудной отделы. Эти импульсы должны достигнуть мотонейронов передних рогов сегментов СЗ-С5, формирующих диафрагмальные нервы, а также мотонейронов грудных сегментов Th2-Th6, формирующих межреберные нервы. Активированные дыхательным центром мотонейроны спинного мозга посылают потоки сигналов по диафрагмальному и межреберным нервам к нервно-мышечным синапсам и вызывают сокращение диафрагмальной, наружных межреберных и межхрящевых мышц. Это приводит к увеличению объема грудной полости за счет опускания купола диафрагмы (рис. 1) и движения (подъем с поворотом) ребер. В результате давление в плевральной щели уменьшается (до 6-20 см вод. ст. в зависимости от глубины вдоха), транспульмональное давление возрастает, становится больше сил эластической тяги легких и они растягиваются, увеличивая объем.

Рис. 1. Изменения размеров грудной клетки, объема легких и давления в плевральной щели при вдохе и выдохе

Увеличение объема легких приводит к снижению давления воздуха в альвеолах (при спокойном вдохе оно становится ниже атмосферного на 2-3 см вод. ст.) и атмосферный воздух по градиенту давления поступает в легкие. Происходит вдох. При этом объемная скорость воздушного потока в дыхательных путях (О) будет прямо пропорциональна градиенту давления (ΔР) между атмосферой и альвеолами и обратно пропорциональна сопротивлению (R) дыхательных путей для потока воздуха.

При усиленном сокращении мышц вдоха грудная клетка еще более расширяется и объем легких возрастает. Глубина вдоха увеличивается. Это достигается благодаря сокращению вспомогательных инспираторных мышц, к которым относятся все мышцы, прикрепляющиеся к костям плечевого пояса, позвоночнику или черепу, способные при своем сокращении поднимать ребра, лопатку и фиксировать плечевой пояс с отведенными назад плечами. Важнейшими среди этих мышц являются: большие и малые грудные, лестничные, грудино-клю- чично-сосцсвидные и передние зубчатые.

Механизм выдоха отличается тем, что спокойный выдох происходит пассивно за счет сил, накопленных при вдохе. Для остановки вдоха и переключения вдоха на выдох необходимо прекращение посылки нервных импульсов из дыхательного центра к мотонейронам спинного мозга и мышцам вдоха. Это приводит к расслаблению мышц вдоха, в результате чего объем грудной клетки начинает уменьшаться под влиянием следующих факторов: эластической тяги легких (после глубокого вдоха и эластической тяги грудной клетки), силы тяжести грудной клетки, приподнятой и выведенной из устойчивого положения при вдохе, и давления органов брюшной полости на диафрагму. Для осуществления усиленного выдоха необходима посылка потока нервных импульсов из центра выдоха к мотонейронам спинного мозга, иннервирующим мышцы выдоха — внутренние межреберные и мышцы брюшного пресса. Их сокращение приводит к еще большему уменьшению объема грудной клетки и удалению большего объема воздуха из легких за счет подъема купола диафрагмы и опускания ребер.

Уменьшение объема грудной клетки приводит к снижению транспульмонального давления. Эластическая тяга легких становится больше этого давления и вызывает уменьшение объема легких. Это увеличивает давление воздуха в альвеолах (на 3-4 см вод. ст. больше атмосферного) и воздух по градиенту давления выходит из альвеол в атмосферу. Совершается выдох.

Тип дыхания определяется по величине вклада различных дыхательных мышц в увеличение объема грудной полости и заполнение легких воздухом при вдохе. Если вдох происходит главным образом за счет сокращения диафрагмы и смещения (вниз и вперед) органов брюшной полости, то такое дыхание называют брюшным или диафрагмальным ; если же за счет сокращения межреберных мышц — грудным . У женщин преобладает грудной тип дыхания, у мужчин — брюшной. У людей, выполняющих тяжелую физическую работу, как правило, устанавливается брюшной тип дыхания.

Работа дыхательных мышц

Для осуществления вентиляции легких необходимо затрачивать работу, которая выполняется за счет сокращения дыхательных мышц.

При спокойном дыхании в условиях основного обмена на работу дыхательных мышц затрачивается 2-3% от всей энергии, расходуемой организмом. При усиленном дыхании эти затраты могут достигать 30% от уровня энергетических затрат организма. У людей с заболеваниями легких и дыхательных путей эти затраты могут быть еще большими.

Работа дыхательных мышц затрачивается на преодоление эластических сил (легких и грудной клетки), динамических (вязкостных) сопротивлений движению потока воздуха через дыхательные пути, инерционной силы и тяжести смещаемых тканей.

Величина работы дыхательных мышц (W) рассчитывается по интегралу произведения изменения объема легких (V) и внутриплеврального давления (Р):

На преодоление эластических сил расходуется 60-80% от общих затрат W , вязкостных сопротивлений — до 30% W .

Вязкостные сопротивления представлены:

  • аэродинамическим сопротивлением дыхательных путей, которое составляет 80-90% суммарных вязкостных сопротивлений и увеличивается при возрастании скорости потока воздуха в дыхательных путях. Объемная скорость этого потока рассчитывается по формуле

где Р a — разность между давлением в альвеолах и атмосфере; R — сопротивление дыхательных путей.

При дыхании через нос оно составляет около 5 см вод. ст. л -1 *с -1 , при дыхании через рот — 2 см вод. ст. л -1 *с -1 . На трахею, долевые и сегментарные бронхи приходится в 4 раза большее сопротивление, чем на более дистальные участки дыхательных путей;

  • сопротивлением тканей, которое составляет 10-20% от общего вязкостного сопротивления и обусловлено внутренним трением и неупругой деформацией тканей грудной и брюшной полости;
  • инерционным сопротивлением (1-3% от общего вязкостного сопротивления), обусловленным ускорением объема воздуха в дыхательных путях (преодоление инерции).

При спокойном дыхании работа по преодолению вязкостных сопротивлений незначительна, но при усиленном дыхании или при нарушении проходимости дыхательных путей может резко возрастать.

Эластическая тяга легких и грудной клетки

Эластическая тяга легких — сила, с которой легкие стремятся сжаться. Две трети эластической тяги легких обусловлены поверхностным натяжением сурфактанта и жидкости внутренней поверхности альвеол, около 30% создается эластическими волокнами легких и примерно 3% тонусом гладко- мышечных волокон внутрилегочных бронхов.

Эластическая тяга легких — сила, с которой ткань легкого противодействует давлению плевральной полости и обеспечивает спадение альвеол (обусловлена наличием в стенке альвеол большого количества эластических волокон и поверхностным натяжением).

Величина эластической тяги легких (Е) обратно пропорциональна величине их растяжимости (С л):

Растяжимость легких у здоровых людей составляет 200 мл/см вод. ст. и отражает увеличение объема легких (V) в ответ на возрастание транспульмонального давления (Р) на 1 см вод. ст.:

При эмфиземе легких их растяжимость увеличивается, при фиброзе уменьшается.

На величину растяжимости и эластической тяги легких сильное влияние оказывает наличие на внутриальвеолярной поверхности сурфактанта, представляющего собой структуру из фосфолипидов и белков, образуемых альвеолярными пневмоцитами 2-го типа.

Сурфактант играет важную роль в поддержании структуры, свойств легких, облегчении газообмена и выполняет следующие функции:

  • снижает поверхностное натяжение в альвеолах и увеличивает растяжимость легких;
  • препятствует слипанию стенок альвеол;
  • увеличивает растворимость газов и облегчает их диффузию через стенку альвеолы;
  • препятствует развитию отека альвеол;
  • облегчает расправление легких при первом вдохе новорожденного;
  • способствует активации фагоцитоза альвеолярными макрофагами.

Эластическая тяга грудной клетки создастся за счет эластичности межреберных хрящей, мышц, париетальной плевры, структур соединительной ткани, способных сжиматься и расширяться. В конце выдоха сила эластичной тяги грудной клетки направлена наружу (в сторону расширения грудной клетки) и максимальна по величине. При развитии вдоха она постепенно уменьшается. Когда вдох достигает 60-70% от его максимально возможной величины, эластическая тяга грудной клетки становится равной нулю, а при дальнейшем углублении вдоха направлена внутрь и препятствует расширению грудной клетки. В норме растяжимость грудной клетки (С |к) приближается к 200 мл/см вод. ст.

Общая растяжимость грудной клетки и легких (С 0) вычисляется по формуле 1/С 0 = 1/C л + 1 /С гк. Средняя величина С 0 составляет 100 мл/см вод. ст.

В конце спокойного выдоха величины эластической тяги легких и грудной клетки равны, но противоположны по направленности. Они уравновешивают друг друга. В это время грудная клетка находится в наиболее устойчивом положении, которое называют уровнем спокойного дыхания и принимают за точку отсчета при различных исследованиях.

Отрицательное давление в плевральной щели и пневмоторакс

Грудная клетка образует герметичную полость, обеспечивающую изоляцию легких от атмосферы. Легкие покрывает листок висцеральной плевры, а внутреннюю поверхность грудной клетки — листок париетальной плевры. Листки переходят один в другой у ворот легкого и между ними образуется щелевидное пространство, заполненное плевральной жидкостью. Часто это пространство называют плевральной полостью, хотя полость между листками образуется лишь в особых случаях. Слой жидкости в плевральной щели несжимаем и нерастяжим и плевральные листки не могут отойти друг от друга, хотя способны легко скользить вдоль (подобно двум стеклам, приложенным смоченными поверхностями, их трудно разъединить, но легко смещать вдоль плоскостей).

При обычном дыхании давление между плевральными листками ниже, чем атмосферное; его называют отрицательным давлением в плевральной щели.

Причинами возникновения отрицательного давления в плевральной щели являются наличие эластической тяги легких и грудной клетки и способность плевральных листков захватывать (сорбировать) молекулы газов из жидкости плевральной щели или воздуха, попадающего в нее при ранениях грудной клетки или при проколах с лечебной целью. Из-за наличия отрицательного давления в плевральной щели в нее идет постоянная фильтрация небольшого количества газов из альвеол. В этих условиях сорбционная активность плевральных листков предотвращает накопление в ней газов и предохраняет легкие от спадания.

Важная роль отрицательного давления в плевральной щели состоит в удерживании легких в растянутом состоянии даже во время выдоха, что необходимо для заполнения ими всего объема грудной полости, определяемого размерами грудной клетки.

У новорожденного соотношение объемов легочной паренхимы и грудной полости больше, чем у взрослых, поэтому в конце спокойного выдоха отрицательное давление в плевральной щели исчезает.

У взрослого человека в конце спокойного выдоха отрицательное давление между листками плевры составляет в среднем 3-6 см вод. ст. (т.е. на 3-6 см меньше, чем атмосферное). Если человек находится в вертикальном положении, то отрицательное давление в плевральной щели вдоль вертикальной оси тела значительно различается (изменяется на 0,25 см вод. ст. на каждый сантиметр высоты). Оно максимально в области верхушек легких, поэтому при выдохе они остаются более растянутыми и при последующем вдохе их объем и вентиляция увеличиваются в небольшой степени. В области основания легких величина отрицательного давления может приближаться к нулю (или оно даже может стать положительным в случае потери легкими эластичности из-за старения или заболеваний). Своей массой легкие давят на диафрагму и прилежащую к ней часть грудной клетки. Поэтому в области основания в конце выдоха они менее всего растянуты. Это создаст условия для их большего растяжения и усиленной вентиляции при вдохе, увеличения газообмена с кровью. Под влиянием силы тяжести к основанию легких притекает больше крови, кровоток в этой зоне легких превышает вентиляцию.

У здорового человека лишь при форсированном выдохе давление в плевральной щели может стать больше атмосферного. Если же выдох производится с максимальным усилием в малое по объему замкнутое пространство (например, в прибор пневмотонометр), то давление в плевральной полости может превысить 100 см вод. ст. С помощью такого дыхательного маневра пневмотонометром определяют силу мышц выдоха.

В конце спокойного вдоха отрицательное давление в плевральной щели составляет 6-9 см вод. ст., а при максимально интенсивном вдохе может достигать большей величины. Если же вдох осуществляется с максимальным усилием в условиях перекрытия дыхательных путей и невозможности поступления воздуха в легкие из атмосферы, то отрицательное давление в плевральной щели на короткое время (1-3 с) достигает 40-80 см вод. ст. С помощью такого теста и прибора пневмогонометра определяют силу мышц вдоха.

При рассмотрении механики внешнего дыхания учитывается также транспульмональное давление — разность между давлением воздуха в альвеолах и давлением в плевральной щели.

Пневмотораксом называют поступление воздуха в плевральную щель, приводящее к спадению легких. В нормальных условиях, несмотря на действие сил эластической тяги, легкие остаются расправленными, так как из-за наличия в плевральной щели жидкости листки плевры не могут разъединиться. При попадании в плевральную щель воздуха, который может быть сжат или расширен в объеме, степень отрицательного давления в ней уменьшается или оно становится равным атмосферному. Под действием эластических сил легкого висцеральный листок отгягивастся от париетального и легкие уменьшаются в размере. Воздух может попасть в плевральную щель через отверстие поврежденной грудной стенки или через сообщение поврежденного легкого (например, при туберкулезе) с плевральной щелью.

Подробности

Внешнее (легочное) дыхание = конвекционный транспорт в альвеолы + диффузия из альвеол в кровь легочных капилляров.

Мышцы, участвующие в акте дыхания:

1. Основные инспираторные – наружные межреберные (поднимают ребра); вспомогательные – большая и малая грудные, лестничнные и грудино-ключно-сосцевидная

2. Основные экспираторные – внутренние межреберные; вспомогательные – мышцы живота.

Типы дыхания : внешнее (легочная вентиляция и газообмен между альвеолами и кровью) и внутреннее (тканевое).

В зависимости от того, в каком направлении изменяются размеры грудной клетки при дыхании, различают грудной, брюшной и смешанный типы дыхания . Грудной тип дыхания чаще встречается у женщин. При нем грудная полость расширяется преимущественно в переднезаднем и боковых направлениях, тогда вентиляция нижних участков легких часто оказывается недостаточной.
Брюшной тип дыхания более характерен для мужчин. Расширение грудной полости при нем происходит преимущественно в вертикальном направлении, за счет диафрагмы, вентиляция верхушек легких может оказаться недостаточной. При смешанном типе дыхания равномерное расширение грудной полости во всех направлениях обеспечивает вентиляцию всех частей легких.

Сопротивления воздушному потоку:

1. Эластические

2. Вязкие (при спокойном дыхании незначительны).

I. Эластическое сопротивление.

Альвеолярное давление (PA) = разница давлений между альвеолярным и атмосферным воздухом. На кривой участок нормального дыхания ≈прямая =>упругое сопротивление всей дыхательной системы при нормальном дыхании почти постоянно.

Плевральное давление (PПЛ) =разница между атмосферным и внутриплевр.давлением. Из графика =>упруг.сопротивление грудн.клетки возрастает с увеличением давления.

Транспульмональное давление (PT) =разница между альвеолярн. и внутриплевр.давления. Все действующие на легкие силы уравновеш-ся в момент полного выдоха (V=ФОЕ).

Показатель эластических свойств – растяжимость (tg угла наклона релакс.кривой) – Compliance: Cдых.системы=ΔV/ΔPa – прирост давления, необходимого для растяжения все больше с увеличивающимся количеством воздуха. Elastance – способность тканей легких вернуться в прежнее состояние после растяжения.

Связь с растяжимостями других структур: 1/CДС=1/СГК +1/СЛ. (СГК=СЛ=2∙CДС=0,2 л/см вод.ст.). Для определения – упрощен.формула (испытуемый вдыхает опр.V воздуха, фиксир. ГК мышцами, открывает голос.щель) =>РА=0 =>Сл=ΔV/ΔPПЛ.

II.Неэластическое сопротивление.

90% - аэродинамическое сопротивление дыхательных путей (поток образует завихрения в местах разветвления бронхов и патологических сужений).

Закон Хагена-Пуазейля : V=ΔP/R=Pa/R (турбулентным потоком пренебрегают). Сопротивление воздухоносных путей R≈2см водн.ст. (Осн.вклад – трахеи и бронхов, у мелких путей – оч.большое сумм.сечение). 10% - Сопротивление тканей (внутр.трение и деформация). Соотношения давление/объем. 1.Форма гр.клетки =Const (i.e., смена выдоха вдохом): действует только эласт.тяга легких =>созд-ся отриц.относительно атмосферного внутриплевр.давления (PПЛ,СТАТ<0; РА,СТАТ=0). 2.Норм.дыхание. Вдох: поступление воздуха в расшир. альвеолы затруднено аэродин.сопротивлением =>А<0 =>PПЛ становится еще более отрицательным (РПЛ,ДИН =РПЛ,СТАТ +РА).

Поверхностное натяжение в альвеолах в 10 раз меньше, чем расчетное натяжение для слоя воды <=за счет сурфактанта - состоит из белков и липидов, в основном произв-х лецитина (гидрофил.головки молекул связаны с молекулами Н2О, а гидрофоб.головки друг от друга отталкиваются). +препятствуют выходу воздуха из мелких альвеол в крупные (по з.Лапласа) – т.к.молекулы сурфактанта располагаются плотнее с уменьшением радиуса альвеолы =>↓пов.натяжение в мелких альвеолах.