Сыпи

Полиненасыщенные жирные кислоты. Польза и вред насыщенных жирных кислот

Важное место в питании людей занимают ненасыщенные жиры, список продуктов которых включает всё натуральное – выращенное в природных условиях. Ненасыщенные кислоты (жиры) состоят из полиненасыщенных и мононасыщенных жиров.

  • Советуем почитать про

Оказывают благотворное влияние на организм человека, являясь незаменимым источником важных микроэлементов и витаминов. стоит употреблять ежедневно, включая в суточный рацион. Но каких продукты богатые ими?

Ненасыщенные жиры – один из видов жиров, наравне с и , который характеризуются значительной пользой в работе организма, обусловленной прямым воздействием на выработку и синтез кислот, не продуцирующихся в теле человека.

Бывают двух видов: мононенасыщенные и полиненасыщенные.

Мононенасыщенные

Мононенасыщенные или Омега-9 – жиры, имеющие за основу олеиновую кислоту, которая поддерживает вес, борется с раковыми клетками, регулирует в крови и обмен веществ. Иммунная система и нормальный гормональный фон также поддерживается ими. Доказано, что приём продуктов насыщенными жирами служит профилактикой таких болезней как рак, диабет и различные виды тромбофилии.

Много мононасыщенных жиров в нерафинированных маслах, орехах и некоторых видах мяса.

Полиненасыщенные жиры

Полиненасыщенные жиры – комплекс жировых кислот, направлений на улучшения метаболизма, регуляцию воспалений, поддержку процессов обеспечения организма витаминами и аминокислотами. К данному классу относятся две группы: и Омега-6.

Отличительной чертой данного типа кислот выступает неспособность человеческого организма их синтезировать.

Человеку необходимо регулярно употреблять в пищу продукты с высоким содержанием Омега-3 и Омега-6, соблюдать баланс между жировыми кислотами. Оптимальное соотношение норм потребления составляет 1 к 3 или 1 к 4.

Поскольку такие жиры способны очень быстро окисляться, срок полезности напрямую зависит от скорости и типа употребления продуктов. То есть чем быстрее вы съедите продукты, тем лучше, и при этом степень обработки (обжаривание, проваривание) должна быть минимальной – отдайте предпочтение сырым или слабосолёным вариантам.

Продукты, содержащие ненасыщенные жиры

Рыба

Рыба – один из основных поставщиков Омега-3 кислот в человеческий организм, при этом доля Омеги-6 крайне незначительна, а Омега-9 вовсе отсутствует.

Рыбные продукты имеют определённую специфику, которая выражается в разнице содержания кислот в условиях обитании рыбы. Так морская рыба питается водорослями и получает огромное количество Омега-3 и немного Омега-6, а речная или выращенная на ферме и вскармливаемая только комбикормом – отличается в 2 раза меньшим содержанием Омега-3 и 13–15 раз большим Омега-6.

Морепродукты являются замечательной альтернативой рыбе в повседневном меню.

Растительные масла

Растительные масла характеризуются большим содержанием Омега-6 и низким уровнем Омега-3, хотя есть исключение в виде . Очень удобно использовать комбинацию рыбы и масел в приготовлении пищи, соблюдая пропорцию 1 к 4.

Особое место среди масел занимает льняное. Высокое и пропорционально правильное содержание полиненасыщенных жиров позволяет обеспечить суточную потребность всего одной чайной ложкой.

Методика холодного отжима позволяет сберечь максимальное количество жиров, старайтесь выбирать именно такие масла.

Орехи и масличные семена

Орехи и масличные семена – продукты, занимающие важное место в повседневном рационе человека. Употребляя орехи в пищу, можно с лёгкостью повысить свою мозговую активность и эффективно пополнять запасы жиров.

Вид орехов или масличных семян (порция 50 грамм) Омега-3(г) Омега-6(г) Омега-9(г)
Арахис 8,341 4,622
Грецкие орехи 3,423 1,784 1,445
Горчичные семена 0,911 2,688 0,452
Кунжут 9,867 4,614
Льняные семена 11,453 3,010 11,439
Миндаль 0,378
Оливки 1,459 36,577
Пальмовое ядро 0,681 5,714
Семечки подсолнуха (высокоолеиновый) 5,529 25,851
Семена подсолнуха 16,395 3,643
Рапсовые семена 5,019 0,473
Соевые бобы 4,729 1,328
Хлопковые семена 9,471 3,952
Тыквенные семечки 0,005 2,785 5,044
Макадамия 1,422 0,491

С помощью орехов и масличных семян можно разнообразить ассортимент потребляемых ненасыщенных жиров.

Использование сырых, вымоченных орехов ускорит процесс усвоения полиненасыщенных жиров и позволяет мононенасыщенным кислотам взаимодействовать с насыщенными жирами, расщепляя их.

Овощи

Овощи представляют самый маленький сегмент списка продуктов с ненасыщенными жирами. Зелень (петрушка, укроп, кинза) и листовые растения (брокколи, цветная капуста и салат) вмещают минимальное количество полиненасыщенных кислот (до 0,1гр на 100гр продукта) и характеризуются отсутствием Омега-9.

Насыщенные жирные кислоты (НЖК) – углеродные цепи, у которых число атомов варьируется от 4 до 30 и больше.

Общая формула соединений данного ряда – CH3 (CH2)nCOOH.

Последние три десятилетия считалось, что насыщенные жирные кислоты вредны для здоровья человека, поскольку являются виновниками развития болезней сердца, сосудов. Новые научные открытия способствовали переоценки роли соединений. Сегодня установлено, что в умеренном количестве (15 грамм в день) они не представляют угрозы для здоровья, а наоборот благоприятно влияют на работу внутренних органов: участвуют в терморегуляции организма, улучшают состояние волос и кожи.

Триглицериды состоят из жирных кислот и глицерина (трехатомного спирта). Первые, в свою очередь, классифицируют по количеству двойных связей между атомами углевода. Если они отсутствуют, такие кислоты называются насыщенные, присутствуют – .

Условно все делятся на три группы.

Насыщенные (предельные). Это жирные кислоты, молекулы которых пресыщены водородом. Они поступают в организм с колбасными изделиями, молочными, мясными продуктами, маслом, яйцами. Насыщенные жиры имеют твердую консистенцию за счет вытянутых цепей вдоль прямой линии и плотного прилегания друг к другу. Из-за такой упаковки температура плавления триглицеридов повышается. Они участвуют в строении клеток, насыщают организм энергией. Насыщенные жиры в небольшом количестве (15 грамм в сутки) нужны организму. Если человек перестанет их употреблять, клетки начинают синтезировать их из другой еды, однако это лишняя нагрузка на внутренние органы. Избыток насыщенных жирных кислот в организме повышает уровень холестерина в крови, способствует накоплению лишнего веса, развитию болезней сердца, формирует предрасположенность к раку.

Ненасыщенные (непредельные). Это незаменимые жиры, поступающие в организм человека вместе с растительной пищей (орехами, кукурузным, оливковым, подсолнечным, льняным маслами). К ним относится олеиновая, арахидоновая, линолевая и линоленовая кислота. В отличие от насыщенных триглицеридов, ненасыщенные имеют «жидкую» консистенцию и не застывают в холодильной камере. В зависимости от числа связей между атомами углевода, различают мононенасыщенные (Омега-9) и соединения (Омега-3, Омега-6). Данная категория триглицеридов улучшает синтез белка, состояние клеточных мембран, чувствительность к инсулину. Помимо этого, выводит плохой холестерин, защищает сердце, сосуды от жировых бляшек, увеличивает число хороших липидов. Организм человека не вырабатывает ненасыщенные жиры, поэтому они должны регулярно поступать с продуктами питания.

Трансжиры. Это самый вредный вид триглицеридов, который получается в процессе обработки водорода под давлением или нагревания растительного масла. При комнатной температуре трансжиры хорошо застывают. Они входят в состав маргарина, заправки для блюд, картофельных чипсов, замороженной пиццы, магазинного печенья и продуктов быстрого питания. Для увеличения срока годности производители пищевой промышленности до 50 % включают трансжиры в состав консервированных и кондитерских изделий. Однако, они не предоставляют ценность для человеческого организма, а наоборот, вредят. Опасность трансжиров: нарушают метаболизм, изменяют обмен инсулина, приводят к ожирению, появлению ишемической болезни сердца.

Суточная норма жира для женщин до 40 лет составляет 85 – 110 грамм, для мужчин – 100 – 150. Людям старшего возраста рекомендуется ограничить потребление до 70 грамм в день. Помните, в рационе на 90 % должны доминировать ненасыщенные жирные кислоты и только 10 % приходится на предельные триглицериды.

Химические свойства

Название жирных кислот зависит от наименования соответствующих углеводородов. Сегодня выделяют 34 основных соединений, которые используются в обиходе человека. В насыщенных жирных кислотах два атома водорода связаны с каждым атомом углерода цепи: СН2-СН2.

Популярные из них:

  • бутановая, CH3(CH2)2COOH;
  • капроновая, CH3(CH2)4COOH;
  • каприловая, CH3(CH2)6COOH;
  • каприновая, CH3(CH2)8COOH;
  • лауриновая, CH3(CH2)10COOH;
  • миристиновая, CH3(CH2)12COOH;
  • пальмитиновая, CH3(CH2)14COOH;
  • стеариновая, CH3(CH2)16COOH;
  • лацериновая, CH3(CH2)30COOH.

В большинстве предельных жирных кислот присутствует четное число атомов углерода. Они хорошо растворяются в петролейном эфире, ацетоне, диэтиловом эфире, хлороформе. Высокомолекулярные предельные соединения не образовывают растворы в холодном спирту. При этом, устойчивы к действию окислителей, галогенов.

В органических растворителях растворимость насыщенных кислот возрастает с повышением температуры и падает с увеличением молекулярной массы. При попадании в кровь такие триглицериды сливаются и образуют сферические вещества, которые откладываются «про запас» в жировой ткани. С этой реакцией связано возникновение мифа о том, что предельные кислоты приводят к закупорке артерий и их нужно полностью исключить из рациона. На самом деле заболевания сердечно-сосудистой системы возникают в результате совокупности факторов: ведения неправильного образа жизни, отсутствия физической нагрузки, злоупотребления высококалорийной вредной пищей.

Помните, сбалансированный, обогащенный насыщенными жирными кислотами рацион не отразится на фигуре, а наоборот, принесет пользу здоровью. При этом, неограниченное их потребление негативно отразится на функционировании внутренних органов и систем.

Значение для организма

Главная биологическая функция насыщенных жирных кислот – снабжение организма энергией.

Для поддержания жизнедеятельности они должны в умеренном количестве (15 грамм в день) всегда присутствовать в рационе питания. Свойства насыщенных жирных кислот:

  • заряжают организм энергией;
  • участвуют в тканевой регуляции, синтезе гормонов, выработке тестостерона у мужчин;
  • формируют мембраны клеток;
  • обеспечивают усвоение и , ;
  • нормализуют менструальный цикл у женщин;
  • улучшают репродуктивную функцию;
  • создают жировую прослойку, которая защищает внутренние органы;
  • регулируют процессы в нервной системе;
  • участвуют в выработке эстрогена у женщин;
  • защищают организм от переохлаждения.

Для поддержания здоровья диетологи рекомендуют включить в ежедневное меню продукты, содержащие насыщенные жиры. На их долю должно приходиться до 10 % калорийности от общего дневного рациона. Это 15 – 20 грамм соединения в сутки. Предпочтение следует отдать следующим «полезным» продуктам: печени крупного рогатого скота, рыбе, молочным изделиям, яйцам.

Потребление насыщенных жирных кислот увеличивают при:

  • легочных заболеваниях (пневмонии, бронхитах, туберкулезе);
  • лечении гастрита, язвы 12-перстной кишки, желудка;
  • выведении камней из мочевого/ желчного пузыря, печени;
  • общем истощении организма;
  • беременности, кормлении грудью;
  • проживании на Крайнем Севере;
  • наступлении холодного времени года, когда на обогрев тела расходуется дополнительная энергия.

Количество насыщенных жирных кислот снижайте в следующих случаях:

  • при сердечно- сосудистых заболеваниях;
  • избыточной массе тела (при 15 «лишних» килограмм);
  • сахарном диабете;
  • высоком уровне ;
  • снижении энергозатрат организма (в жаркое время года, на отдыхе, при сидячей работе).

При недостаточном поступлении насыщенных жирных кислот у человека развиваются характерные симптомы:

  • снижается вес тела;
  • нарушается работа нервной системы;
  • падает производительность труда;
  • происходит гормональный дисбаланс;
  • ухудшается состояние ногтей, волос, кожи;
  • наступает бесплодие.

Признаки переизбытка соединений в организме:

  • увеличение артериального давления, нарушения работы сердца;
  • появление симптомов атеросклероза;
  • формирование камней в жёлчном пузыре, почках;
  • повышение холестерина, что ведет к появлению жировых бляшек в сосудах.

Помните, насыщенные жирные кислоты едят умеренно, не превышая суточную норму. Только так организм сможет извлечь из них максимальную пользу, не накапливая шлаки и не «перегружаясь».

Наибольшее количество НЖК сосредоточено в продуктах животного происхождения (мясе, птице, сливках) и растительных маслах (пальмовом, кокосовом). Кроме того, насыщенные жиры организм человека получает с сырами, кондитерскими изделиями, колбасами, печеньем.

Сегодня проблематично найти продукт, содержащий один вид триглицеридов. Они находятся в комбинации (в сале, сливочном масле сосредоточены насыщенные, ненасыщенные жирные кислоты и холестерин).

Наибольшее количество НЖК (до 25 %) входит в состав пальмитиновой кислоты.

Она обладает гиперхолестеринемическим действием, поэтому прием продуктов в которые она входит, следует ограничить (пальмового, коровьего масла, свиного сала, пчелиного воска, спермацета кашалота).

Таблица № 1 «Природные источники насыщенных жирных кислот»
Наименование продукта Содержание НСЖ на 100 грамм объема, грамм
Масло сливочное 47
Твердые сыры (30%) 19,2
Утка (с кожей) 15,7
Колбаса сырокопченая 14,9
Масло оливковое 13,3
Сыр плавленый 12,8
Сметана 20% 12,0
Гусь (с кожей) 11,8
Творог 18% 10,9
Масло кукурузное 10,6
Баранина без жира 10,4
Колбаса вареная жирная 10,1
Масло подсолнечное 10,0
Орехи грецкие 7,0
Колбаса вареная нежирная 6,8
Говядина без жира 6,7
Мороженое сливочное 6.3
Творог 9% 5,4
Свинина мясная 4,3
Рыба средней жирности 8% 3,0
Молоко 3% 2,0
Курица (филе) 1,0
Рыба нежирных сортов (2% жирности) 0,5
Батон нарезной 0,44
Хлеб ржаной 0,4
Творог обезжиренный 0,3

Продукты питания, содержащие максимальную концентрацию насыщенных жирных кислот:

  • фастфуд;
  • сливки;
  • пальмовое, кокосовое масло;
  • шоколад;
  • кондитерские изделия;
  • шпик;
  • куриный жир;
  • мороженное, сделанное из жирного коровьего молока;
  • какао-масло.

Для поддержания здоровья сердца и сохранения стройности рекомендуется отдавать предпочтение продуктам с меньшим количеством жира. Иначе проблем с кровеносными сосудами, лишним весом, зашлакованностью организма не избежать.

Помните, наибольший вред для человека представляют триглицериды с высокой температурой плавления. Для переваривания и выведения отходов от поджаренного куска жирной говядины или свинины организму потребуется пять часов и значительные энергетические затраты, чем для усваивания курицы или индейки. Поэтому лучше отдавать предпочтение птичьему жиру.

Сферы применения

  1. В косметологии. Насыщенные жирные кислоты входят в состав дерматотропических средств, кремов, мазей. Пальмитиновая кислота применяется как структурообразователь, эмульгатор, эмолент. Лауриновая используется в качестве антисептика продукции по уходу за кожей. Каприловая кислота нормализует кислотность эпидермиса, насыщает ее кислородом, препятствует росту дрожжевых грибков.
  2. В бытовой химии. НЖК используются при изготовлении туалетного мыла, моющих средств. Лауриновая кислота служит катализатором пенообразования. Масла, содержащие стеариновые, миристиновые и пальмитиновые соединения используются в мыловарении для приготовления твердого продукта, получения смазочных масел, пластификаторов. Стеариновая кислота применяется в производстве резины, как смягчитель, и при создании свечей.
  3. В пищевой промышленности. Используются как пищевые добавки под индексом Е570. Насыщенные жирные кислоты выполняют роль глазирователя, пеногасителя, эмульгатора, стабилизатора пены.
  4. В и лекарственных препаратах. Лауриновая, миристиновая кислоты проявляют фунгицидную, вирицидную, бактерицидную активность, подавляя рост дрожжевых грибков и патогенной микрофлоры. Они способны усиливать антибактериальное действие антибиотиков в кишечнике, что повышает эффективность лечения вирусно-бактериальных острых кишечных инфекций. Предположительно, каприловая кислота поддерживает в мочеполовой системе нормальный баланс микроорганизмов. Однако данные свойства не используются в препаратах. При взаимодействии лауриновой и миристиновой кислот с бактериальными, вирусными антигенами они выступают иммунологическими стимуляторами, способствуя повышению иммунной реакции организма на внедрение кишечного патогена. Несмотря на это, жирные кислоты входят в состав лекарственных средств, БАДов исключительно как вспомогательные вещества.
  5. В птицеводстве, животноводстве. Бутановая кислота увеличивает продуктивный срок жизни свиноматки, поддерживает микроэкологический баланс, улучшает всасывание питательных веществ и рост ворсинок кишечника в организме скота. Кроме того, она предупреждает окислительный стресс, проявляет противораковые, противовоспалительные свойства, поэтому используется при создании кормовых добавок в птицеводстве, животноводстве.

Вывод

Насыщенные и ненасыщенные жирные кислоты – основные поставщики энергии в организм человека. Даже в состоянии покоя для строения и поддержания жизнедеятельности клеток они крайне важны. Насыщенные жиры поступают в организм с едой животного происхождения, их отличительной особенностью является твердая консистенция, которая сохраняется даже при комнатной температуре.

Дефицит и излишек предельных триглицеридов негативно отражается на здоровье человека. В первом случае снижается работоспособность, ухудшается состояние волос и ногтей, страдает нервная система, во втором – происходит скопление избыточного веса, повышается нагрузка на сердце, образовываются холестериновые бляшки на стенках сосудов, накапливаются шлаки, развивается диабет.

Для хорошего самочувствия рекомендуемая суточная доза насыщенных жирных кислот составляет 15 грамм. Для лучшего усвоения и выведения отработанных остатков ешьте их с зеленью и овощами. Так вы не перегрузите организм и восполните энергозапасы.

Сократите потребление вредных жирных кислот, содержащихся в быстрой еде из фастфуда, сдобной выпечке, жаренном мясе, пицце, тортах. Замените их на молочные продукты, орехи, растительные масла, мясо птицы, «дары моря». Следите за количеством и качеством пищи, которую едите. Ограничьте употребление красного мяса, обогатите рацион свежими овощами, фруктами и вы удивитесь результату: самочувствие и здоровье улучшатся, повысится работоспособность, а от прежней депрессии не останется и следа.

В природе обнаружено свыше 200 жирных кислот, которые входят в состав липидов микроорганизмов, растений и животных.

Жирные кислоты – алифатические карбоновые кислоты (рисунок 2). В организме могут находиться как в свободном состоянии, так и выполнять роль строительных блоков для большинства классов липидов.

Все жирные кислоты, входящие в состав жиров, делят на две группы: насыщенные и ненасыщенные. Ненасыщенные жирные кислоты, имеющие две и более двойных связей, называют полиненасыщенными. Природные жирные кислоты весьма разнообразны, однако имеют ряд общих черт. Это монокарбоновые кислоты, содержащие линейные углеводородные цепи. Почти все они содержат четное число атомов углерода (от 14 до 22, чаще всего встречаются с 16 или 18 атомами углерода). Гораздо реже встречаются жирные кислоты с более короткими цепями или с нечетным числом атомов углерода. Содержание ненасыщенных жирных кислот в липидах, как правило, выше, чем насыщенных. Двойные связи, как правило, находятся между 9 и 10 атомами углерода, почти всегда разделены метиленовой группой и имеют цис-конфигурацию.

Высшие жирные кислоты практически нерастворимы в воде, но их натриевые или калиевые соли, называемые мылами, образуют в воде мицеллы, стабилизируемые за счет гидрофобных взаимодействий. Мыла обладают свойствами поверхностно-активных веществ.

Жирные кислоты отличаются:

– длиной их углеводородного хвоста, степенью их ненасыщенности и положением двойных связей в цепях жирных кислот;

– физико-химическими свойствами. Обычно насыщенные жирные кислоты при температуре 22 0 С имеют твердую консистенцию, тогда как ненасыщенные представляют собой масла.

Ненасыщенные жирные кислоты имеют более низкую температуру плавления. Полиненасыщенные жирные кислоты быстро окисляются на открытом воздухе, чем насыщенные. Кислород реагирует с двойными связями с образованием пероксидов и свободных радикалов;

Таблица 1 – Основные карбоновые кислоты, входящие в состав липидов

Число двойных связей

Наименование кислоты

Структурная формула

Насыщенные

Лауриновая

Миристиновая

Пальмитиновая

Стеариновая

Арахиновая

СН 3 –(СН 2) 10 –СООН

СН 3 –(СН 2) 12 –СООН

СН 3 –(СН 2) 14 –СООН

СН 3 –(СН 2) 16 –СООН

СН 3 –(СН 2) 18 –СООН

Ненасыщенные

Олеиновая

Линолевая

Линоленовая

Арахидовая

СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН

СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН

СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН

СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН

В высших растениях присутствуют, в основном, пальмитиновая кислота и две ненасыщенные кислоты – олеиновая и линолевая. Доля ненасыщенных жирных кислот в составе растительных жиров очень высока (до 90 %), а из предельных лишь пальмитиновая кислота содержится в них в количестве 10-15 %.

Стеариновая кислота в растениях почти не встречается, а содержится в значительном количестве (25 % и более) в некоторых твердых животных жирах (жир баранов и быков) и маслах тропических растений (кокосовое масло). Лауриновой кислоты много в лавровом листе, миристиновой – в масле мускатного ореха, арахиновой и бегеновой – в арахисовом и соевом маслах. Полиненасыщенные жирные кислоты – линоленовая и линолевая – составляют главную часть льняного, конопляного, подсолнечного, хлопкового и некоторых других растительных масел. Жирные кислоты оливкового масла на 75% представлены олеиновой кислотой.

В организме человека и животных не могут синтезироваться такие важные кислоты, как линолевая, линоленовая. Арахидоновая – синтезируется из линолевой. Поэтому они должны поступать в организм с пищей. Эти три кислоты получили название незаменимых жирных кислот. Комплекс этих кислот называют витамином F. При длительном отсутствии их в пище у животных наблюдается отставание в росте, сухость и шелушение кожи, выпадение шерсти. Описаны случаи недостаточности незаменимых жирных кислот и у человека. Так, у детей грудного возраста, получающих искусственное питание с незначительным содержанием жиров, может развиться чешуйчатый дерматит, т.е. проявляются признаки авитаминоза.

В последнее время большое внимание уделяется жирным кислотам Омега-3. Эти кислоты обладают сильным биологическим действием – уменьшают слипание тромбоцитов, тем самым предупреждают инфаркты, снижают артериальное давление, уменьшают воспалительные процессы в суставах (артриты), необходимы для нормального развития плода у беременных. Эти жирные кислоты содержатся в жирных сортах рыб (скумбрия, лосось, семга, норвежская сельдь). Рекомендуется употреблять морскую рыбу 2-3 раза в неделю.

Номенклатура жиров

Нейтральные ацилглицеролы служат главными составными частями природных жиров и масел, чаще всего это смешанные триацилглицеролы. По происхождению природные жиры делят на животные и растительные. В зависимости от жирно-кислотного состава жиры и масла по консистенции бывают жидкими и твердыми. Животные жиры (баранье, говяжье, свиное сало, молочный жир) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему при комнатной температуре они твердые.

Жиры, в состав которых входит много ненасыщенных кислот (олеиновая, линолевая, линоленовая и др.), при обычной температуре жидкие и называются маслами.

Жиры, как правило, содержатся в животных тканях, масла – в плодах и семенах растений. Особенно высоко содержание масел (20-60 %) в семенах подсолнечника, хлопчатника, сои, льна. Семена этих культур используются в пищевой промышленности для получения пищевых масел.

По способности высыхать на воздухе масла подразделяются: на высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, кукурузное), невысыхающие (оливковое, касторовое).

Физические свойства

Жиры легче воды и нерастворимы в ней. Хорошо растворимы в органических растворителях, например, в бензине, диэтиловом эфире, хлороформе, ацетоне и т.д. Температура кипения жиров не может быть определена, поскольку при нагревании до 250 о С они разрушаются с образованием из глицерина при его дегидратации сильно раздражающего слизистые оболочки глаз альдегида  акролеина (пропеналя).

Для жиров прослеживается довольно четкая связь химического строения и их консистенции. Жиры, в которых преобладают остатки насыщенных кислот – твёрдые (говяжий, бараний и свиной жиры). Если в жире преобладают остатки ненасыщенных кислот, он имеет жидкую консистенцию. Жидкие растительные жиры называется маслами (подсолнечное, льняное, оливковое и т.д. масла). Организмы морских животных и рыбы содержат жидкие животные жиры. В молекулы жиров мазеобразной (полутвёрдой) консистенции входят одновременно остатки насыщенных и ненасыщенных жирных кислот (молочный жир).

Химические свойства жиров

Триацилглицеролы способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, она может происходить как при ферментативном гидролизе, так и при действии кислот и щелочей. Жидкие растительные масла превращают в твердые жиры при помощи гидрогенизации. Этот процесс широко используется для изготовления маргарина и кулинарного жира.

Жиры при сильном и продолжительном взбалтывании с водой образуют эмульсии – дисперсные системы с жидкой дисперсной фазой (жир) и жидкой дисперсионной средой (водой). Однако эти эмульсии нестойки и быстро разделяются на два слоя – жир и воду. Жиры плавают над водой, поскольку их плотность меньше плотности воды (от 0,87 до 0,97).

Гидролиз. Среди реакций жиров особое значение имеет гидролиз, который можно осуществить как кислотами, так и основаниями (щелочной гидролиз называют омылением):

Омыляемые липиды 2

Простые липиды 2

Жирные кислоты 3

Химические свойства жиров 6

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖИРОВ 11

Сложные липиды 14

Фосфолипиды 14

Мыла и детергенты 16

Гидролиз жиров идет постепенно; например, при гидроли­зе тристеарина получается сначала дистеарин, затем моносте­арин и, наконец, глицерин и стеариновая кислота.

Практически гидролиз жиров производят или перегретым паром, или же нагреванием в присутствии серной кислоты или щелочей. Превосходными катализаторами гидролиза жиров являются сульфокислоты, получаемые сульфированием смеси непредельных жирных кислот с ароматическими углеводоро­дами (контакт Петрова ). В семенах клещевины находится особый фермент - липаза , ускоряющий гидролиз жиров. Ли­паза широко применяется в технике для каталитического гид­ролиза жиров.

Химические свойства

Химические свойства жиров определяются сложноэфирным строением молекул триглицеридов и строением и свойствами углеводородных радикалов жирных кислот , остатки которых входят в состав жира.

Как сложные эфиры жиры вступают, например, в следующие реакции:

– Гидролиз в присутствии кислот (кислотный гидролиз )

Гидролиз жиров может протекать и биохимическим путем под действием фермента пищеварительного тракта липазы.

Гидролиз жиров может медленно протекать при длительном хранении жиров в открытой упаковке или термической обработке жиров в условиях доступа паров воды из воздуха. Характеристикой накопления в жире свободных кислот, придающих жиру горечь и даже токсичность является «кислотное число»: число мг КОН, пошедшее на титрование кислот в 1г жира.

Омыление:

Наиболее интересными и полезными реакциями углеводородных радикалов являются реакции по двойным связям:

Гидрогенизация жиров

Растительные масла (подсолнечное, хлопковое, соевое) в присутствии катализаторов (например, губчатый никель) при 175-190 о С и давлении 1,5-3 атм гидрируются по двойным С = С связям углеводородных радикалов кислот и превращаются в твёрдый жир – саломас . При добавлении к нему так называемых отдушек для придания соответствующего запаха и яиц, молока, витаминов для улучшения питательных качеств получают маргарин . Саломас используется также в мыловарении, фармации (основы для мазей), косметике, для изготовления технических смазок и т.д.

Присоединение брома

Степень ненасыщенности жира (важная технологическая характеристика) контролируется по «йодному числу» : число мг йода, пошедшее на титрование 100 г жира в процентах (анализ с бисульфитом натрия).

Окисление

Окисление перманганатом калия в водном растворе приводит к образованию предельных дигидроксикислот (реакция Вагнера)

ПРОГОРКАНИЕ

При хранении растительные масла, животные жиры, а также жиросодержащие продукты (мука, крупа, кондитерские изделия, мясные продукты) под влиянием кислорода воздуха, света, ферментов, влаги приобретают неприятный вкус и запах. Иными словами, жир прогоркает.

Прогоркание жиров и жиросодержащих продуктов ­– результат сложных химических и биохимических процессов, протекающих в липидном комплексе.

В зависимости от характера основного процесса, протекающего при этом, различают гидролитическое и окислительное прогоркание. Каждый из них может быть разделен на автокаталитическое (неферментативное) и ферментативное (биохимическое) прогоркание.

ГИДРОЛИТИЧЕСКОЕ ПРОГОРКАНИЕ

При гидролитическом прогоркании происходит гидролиз жира с образованием глицерина и свободных жирных кислот.

Неферментативный гидролиз протекает с участием растворенной в жире воды, и скорость гидролиза жира при обычных температурах невелика. Ферментативный гидролиз происходит при участии фермента липазы на поверхности соприкосновения жира и воды и возрастает при эмульгировании.

В результате гидролитического прогоркания увеличивается кислотность, появляется неприятный вкус и запах. Особенно это сильно выражено при гидролизе жиров (молочного, кокосового и пальмового), содержащих низко- и среднемолекулярные кислоты, такие как масляную, валериановую, капроновую. Высокомолекулярные кислоты не имеют вкуса и запаха, а повышение их содержания не приводит к изменению вкуса масел.

ОКИСЛИТЕЛЬНОЕ ПРОГОРКАНИЕ

Наиболее распространенным видом порчи жиров в процессе хранения является окислительное прогоркание. В первую очередь окислению подвергаются свободные, а не связанные в триацилглицеролах ненасыщенные жирные кислоты. Процесс окисления может происходить неферментативным и ферментативным путями.

В результате неферментативного окисления кислород присоединяется к ненасыщенным жирным кислотам по месту двойной связи с образованием циклической перекиси, которая распадается с образованием альдегидов, придающих жиру неприятный запах и вкус:

Также в основе неферментативного окислительного прогоркания лежат цепные радикальные процессы, в которых участвуют кислород и ненасыщенные жирные кислоты.

Под действием перекисей и гидроперекисей (первичных продуктов окисления) происходит дальнейший распад жирных кислот и образование вторичных продуктов окисления (карбонилсодержащих): альдегидов, кетонов и других неприятных на вкус и запах веществ, вследствие чего жир прогоркает. Чем больше двойных связей в жирной кислоте, тем выше скорость ее окисления.

При ферментативном окислении этот процесс катализируется ферментом липоксигеназой с образованием гидроперекисей. Действие липоксигеназы сопряжено с действием липазы, которая предварительно гидролизует жир.

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖИРОВ

Кроме температуры плавления и затвердевания, для ха­рактеристики жиров применяются следующие величины: кислотное число, перекисное число, число омыления, йодное число.

Природные жиры нейтральны. Однако при переработке или хранении вследствие процессов гидролиза или окисления образуются свободные кислоты, количество которых непостоянно

Под действием ферментов липазы и липоксигеназы изменяется качество жиров и масел, которое характеризуется следующими показателями или числами:

Кислотное число (К.ч.) – это количество миллиграммов гидроксида калия, необходимого для нейтрализации свободных жирных кислот в 1 г жира.

При хранении масла наблюдается гидролиз триацилглицеролов, это приводит к накоплению свободных жирных кислот, т.е. к возрастанию кислотности. Повышение К.ч. указывает на снижение его качества. Кислотное число является гостированным показателем масла и жира.

Йодное число (Й.ч.) – это количество граммов йода, присоединившегося по месту двойных связей к 100 г жира:

Йодное число позволяет судить о степени ненасыщенности масла (жира), о склонности его к высыханию, прогорканию и другим изменениям, происходящим при хранении. Чем больше содержится в жире ненасыщенных жирных кислот, тем выше йодное число. Уменьшение йодного числа в процессе хранения масла является показателем его порчи. Для определения йодного числа применяют растворы хлорида иода IC1, бромида иода IBr или иода в растворе сулемы, которые бо­лее реакционноспособны, чем сам иод. Йодное число является мерой ненасыщенности кислот жиров. Оно важно для оценки качества высыхающих масел.

Перекисное число (П.ч.) показывает количество перекисей в жире, выражают его в процентах йода, выделенного из йодистого калия перекисями, образовавшимися в 1 г жира.

В свежем жире перекиси отсутствуют, но при доступе воздуха они появляются сравнительно быстро. В процессе хранения перекисное число увеличивается.

Число омыления (Ч.о. ) – равно числу миллиграммов гидроксида калия, расходующихся при омылении 1 г жира кипячением последнего с избытком гидроксида калия в спиртовом раство­ре. Число омыления чистого триолеина равно 192. Высокое число омыления указывает на присутствие кислот с «меньши­ми молекулами». Малые числа омыления указывают на при­сутствие более высокомолекулярных кислот или же неомыляемых веществ.

Полимеризация масел. Весьма важными являются ре­акции автоокисления и полимеризации масел. По этому при­знаку растительные масла делятся на три категории: высы­хающие, полувысыхающие и невысыхающие.

Высыхающие масла в тонком слое обладают способностью образовывать на воздухе эластичные, блестящие, гибкие и прочные пленки, нерастворимые в органических растворите­лях, устойчивые к внешним воздействиям. На этом свойстве основано использование этих масел для приготовления лаков и красок. Наиболее часто применяемые высыхающие масла приведены в табл. 34.

Таблица 34. Характеристики высыхающих масел

Йодное число

паль­мити­новая

стеа­рино­вая

олеи­новая

лино- левая

лино- лено- вая

элео- стеари- новая

Тунговое

Периллевое


Основной характерной чертой высыхающих масел являет­ся высокое содержание непредельных кислот. Для оценки ка­чества высыхающих масел применяют йодное число (оно дол­жно быть не менее 140).

Процесс высыхания масел заключается в окислительной полимери­зации. Все ненасыщенные эфиры жирных кислот и их глицериды окис­ляются на воздухе. По-видимому, процесс окисления представляет собой цепную реакцию, приводящую к неустойчивой гидроперекиси, которая разлагается с образованием окси- и кетокислот.

Высыхающие масла, содержащие глицериды ненасыщенных кислот с двумя или тремя двойными связями, служат для приготовления оли­фы. Для получения олифы льняное масло нагревают до 250-300 °С в присутствии катализаторов.

Полу высыхающие масла (подсолнечное, хлопковое) отличаются от высыхающих меньшим содержанием непредельных кислот (йодное чис­ло 127-136).

Невысыхающие масла (оливковое, миндальное) имеют йодное число ниже 90 (например, для оливкового масла 75-88).

Воски

Это сложные эфиры высших жирных кислот и высших одноатомных спиртов жирного (реже ароматического) ряда.

Воски являются твердыми соединениями с ярко выраженными гидрофобными свойствами. Природные воски содержат также некоторое количество свободных жирных кислот и высокомолекулярных спиртов. В состав восков входят как обычные, содержащиеся в жирах, – пальмитиновая, стеариновая, олеиновая и др., так и жирные кислоты, характерные для восков, имеющие гораздо большие молекулярные массы, – карноубовая С 24 Н 48 О 2 , церотиновая С 27 Н 54 О 2 , монтановая С 29 Н 58 О 2 и др.

Среди высокомолекулярных спиртов, входящих в состав восков, можно отметить цетиловый – СН 3 –(СН 2) 14 –СН 2 ОН, цериловый – СН 3 –(СН 2) 24 –СН 2 ОН, мирициловый СН 3 –(СН 2) 28 –СН 2 ОН.

Воски встречаются как в животных, так и в растительных организмах и выполняют, главным образом, защитную функцию.

В растениях они покрывают тонким слоем листья, стебли и плоды, тем самым, предохраняя их от смачивания водой, высыхания, механических повреждений и поражения микроорганизмами. Нарушение этого налета приводит к быстрой порче плодов при их хранении.

Например, значительное количество воска выделяется на поверхности листьев пальмы, произрастающей в Южной Америке. Этот воск, называемый карноубским, является, в основном, церотиново-мирициловым эфиром:

,

имеет желтый или зеленоватый цвет, очень тверд, плавится при температуре 83-90 0 С, идет на выделку свечей.

Среди животных восков наибольшее значение имеет пчелиный воск, под его покровом хранится мед и развиваются личинки пчелы. В пчелином воске преобладает пальмитиново-мирициловый эфир:

а также высокое содержание высших жирных кислот и различных углеводородов, плавится пчелиный воск при температуре 62-70 0 С.

Другими представителями воска животных является ланолин и спермацет. Ланолин предохраняет волосы и кожу от высыхания, очень много его содержится в овечьей шерсти.

Спермацет – воск, добывающий из спермацетового масла черепных полостей кашалота, состоит, в основном, (на 90%) из пальмитиново-цетилового эфира:

твердое вещество, его температура плавления 41-49 0 С.

Различные воска широко применяют для изготовления свечей, помад, мыла, разных пластырей.

Насыщенные жирные кислоты (НЖК), наиболее представленные в пище, делятся на короткоцепочечные (4… 10 атомов углерода - масляная, капроновая, каприловая, каприновая), среднецепочечные (12… 16 атомов углеро­да - лауриновая, миристиновая, пальмитиновая) и длинноцепочечные (18 атомов углерода и более - стеариновая, арахидиновая).

Насыщенные жирные кислоты с короткой длиной углеродной цепи практи­чески не связываются с альбуминами в крови, не депонируются в тканях и не включаются в состав липопротеинов - они быстро окисляются с образованием кетоновых тел и энергии.

Так же они выполняют ряд важных биологических функций, например, масляная кислота участвует в генетической регуляции, воспаления и иммунного ответа на уровне слизистой оболочки кишечника, а также обеспечивает клеточную дифференцировку и апоптоз.

Каприновая кислота является предшественником монокаприна — соединения с антивирусной активностью. Избыточное поступление короткоцепочечных жирных кислот может привести к развитию метаболического ацидоза.

Насыщенные жирные кислоты с длинной и средней углеродной цепью, напротив, включаются в состав липопротеинов, циркулируют в крови, запасаются в жировых депо и используются для синтеза других липоидных соединений в организме, например холестери­на Кроме того, для лауриновой кислоты показана способность инактивировать ряд микроорганизмов, в частности Helicobacter pylory, а также грибки и вирусы за счет разрыва липидного слоя их биомембран.

Миристиновая и лауриновая жирные кислоты сильно повышают уровень холестерина в сыворотке крови и поэтому ассоциируются с максимальным риском развития ате­росклероза.

Пальмитиновая кислота также ведет к повышенному синтезу липопротеинов. Она является основной жирной кислотой, связывающей кальций (в составе жирных молочных продуктов) в неусваиваемый комплекс, омыляя его.

Стеариновая кислота, так же как и короткоцепочечные насыщенные жирные кислоты, практически не влияет на уровень холестерина в крови, более того - она способна снижать усвояемость холесте­рина в кишечнике за счет уменьшения его растворимости.

Ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты подразделяют по степени ненасыщенности на моно ненасыщенные жирные кислоты (МНЖК) и поли ненасыщенные жирные кислоты (ПНЖК).

Мононенасыщенные жирные кислоты имеют одну двойную связь. Основным их представителем в рационе является олеиновая кислота. Ее основными пищевыми источниками служат оливковое и арахисовое масло, свиной жир. К МНЖК относятся также эруковая кислота, составляющая 1/3 от состава жирных кислот в рапсовом масле, и пальмитолеиновая кислота, присутствующая в рыбьем жире.

К ПНЖК относятся жирные кислоты, имеющие несколько двойных связей: линолевая, линоленовая, арахидоновая, эйкозапентаеновая, докозагексаеновая. В питании их основными источниками являются растительные масла, рыбий жир, орехи, семена, бобовые. Подсолнечное, соевое, кукурузное и хлопковое масла являются основными источниками линолевой кислоты в питании. В рапсовом, соевом, горчичном, кунжутном масле содержатся значимые количества линолевой и линоленовой кислот, причем соотношение их различно - от 2:1 в рапсовом, до 5:1 в соевом.

В организме человека ПНЖК выполняют биологически важные функции, связанные с организацией и функционированием биомембран и синтезом тканевых регуляторов. В клетках происходит сложный процесс синтеза и взаимного превращения ПНЖК: линолевая кислота способна трансформироваться в арахидоновую с последующим включением ее в биомембраны или синтезом лейкотриенов, тромбоксанов, простагландинов. Линоленовая кислота играет важную роль в нормальном развитии и функционировании миелиновых волокон нервной системы и сетчатки глаза, входя в состав структурных фосфолипидов, а также содержится в значительных количествах в сперматозоидах.

Полиненасыщенные жирные кислоты состоят из двух основных семейств: производные линолевой кислоты, относящиеся к омега-6 жирным кислотам, и производные линоленовой кислоты — к омега-3 жирным кислотам. Именно соотношение этих семейств при условии общей сбалансированности поступления жира становится доминирующим с позиций оптимизации липидного обмена в организме за счет модификации жирно-кислотного состава пищи.

Линоленовая кислота в организме человека превращается в длинноцепочечные n-3 ПНЖК - эйкозапентаеновую (ЭПК) и докозагексаеновую (ДГК). Эйкозапентаеновая кислота определяется наряду с арахидоновой в структуре биомембран в количестве прямо пропорциональном ее содержанию в пище. При высоком уровне поступления с пищей линолевой кислоты относительно линоленовой (или ЭПК) повышается общее количество арахидоновой кислоты, включенной в биомембраны, что изменяет их функциональные свойства.

В результате использования организмом ЭПК для синтеза биологически активных соединений образуются эйкозаноиды, физиологические эффекты которых (например, снижение скорости тромбообразования) могут быть прямо противоположными действию эйкозаноидов, синтезируемых из арахидоновой кислоты. Показано также, что в ответ на воспаление ЭПК трансформируется в эйкозаноиды, обеспечивая более тонкую по сравнению с эйкозаноидами — производными арахидоновой кислоты, регуляцию фазы воспаления и тонуса сосудов.

Докозагексаеновая кислота найдена в высоких концентрациях в мембранах клеток сетчатки, которые поддерживаются на этом уровне вне зависимости от поступления омега-З ПНЖК с питанием. Она играет важную роль в регенерации зрительного пигмента родопсина. Также высокие концентрации ДГК обнаруживаются в мозге и нервной системе. Эта кислота используется нейронами для модификаций физических характеристик собственных биомембран (таких, как текучесть) в зависимости от функциональных потребностей.

Последние достижения в области нутриогеномики подтверждают участие ПНЖК семейства омега-3 в регуляции экспрессии генов, участвующих в обмене жиров и фазах воспаления, за счет активации факторов транскрипции.

В последние годы делаются попытки определить адекватные уровни поступления омега-3 ПНЖК с питанием. В частности, показано, что для взрослого здорового человека употребление в составе пищи 1,1… 1,6 г/сут линоленовой кислоты полностью покрывает физиологические потребности в этом семействе жирных кислот.

Основными пищевыми источниками ПНЖК семейства омега-3 являются льняное масло, грецкие орехи и жир морских рыб.

В настоящее время оптимальным соотношением в питании ПНЖК различных семейств считается следующее: омега-6: омега-3 = 6…10:1.

Основные пищевые источники линоленовой кислоты

Продукт Порция, г Содержание линоленовой кислоты, г
Льняное масло 15 (1 столовая ложка) 8,5
Грецкий орех 30 2,6
Рапсовое масло 15 (1 столовая ложка) 1,2
Соевое масло 15(1 столовая ложка) 0,9
Горчичное масло 15(1 столовая ложка) 0,8
Оливковое масло 15 (1 столовая ложка) 0,1
Брокколи 180 0,1

Основные пищевые источники ПНЖК семейства омега-3

Продукт Порция, г ЭПК, г ДГК, г Порция,обеспечивающая поступление 1 г ЭПК + ДГК, г
Сельдь 90 1,06 0,75 45
Лосось 90 0,86 0,62 60
Устрицы 90 0,75 0,43 75
Форель 90 0,40 0,44 105
Крабы 90 0,24 0,10 270
Креветки 90 0,15 0,12 330
Треска 90 0,09 0,15 375
Рыбий жир (лососевый) 1 0,13 0,09 5

Насыщенные (синоним предельные ) жирные кислоты (англ. saturated fatty acids ) - одноосновные жирные кислоты, у которых отсутствуют двойные или тройные связи между соседними атомами углерода, то есть все такие связи только одинарные.

Не относятся к насыщенным жирные кислоты имеющие одну или больше сдвоенных связей между атомами углерода. Если сдвоенная связь одна - такая кислота называется мононенасыщенной . Если двойных связей больше одной - полиненасыщенной .

Насыщенные жирные кислоты составляют 33-38% подкожного жира человека (в порядке убывания: пальмитиновая, стеариновая, миристиновая и другие).

Нормы потребления насыщенных жирных кислот
Согласно Методическим рекомендациям МР 2.3.1.2432-08 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации», утверждённых Роспотребнадзором 18.12.2008 г.: «Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота. Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы , не депонируются в печени и подвергаются β-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. К таким животным жирам относятся бараний, говяжий, свиной и ряд других. Высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, сердечно-сосудистых и других заболеваний.

Потребление насыщенных жирных кислот для взрослых и детей должно составлять не более 10% от калорийности суточного рациона».

Такая же норма: «насыщенные жирные кислоты должны давать не более 10% от общего числа калорий для любого возраста» содержится в 2015–2020 Dietary Guidelines for Americans (официальное издание Министерства здравоохранения США).

Основные насыщенные жирные кислоты
Разные авторы по-разному определяют, какие из карбоновых кислот относятся к жирным. Наиболее широкое определение: жирными называются карбоновые кислоты, не имеющие ароматических связей. Мы будем использовать широко распространённый подход, при котором жирной кислотой называется карбоновая кислота, не имеющая разветвлений и замкнутых цепей (но без уточнения в отношении минимального количества атомов углерода). При таком подходе общая формула для насыщенных жирных кислот выглядит следующим образом: CH 3 -(CH 2) n -COOH (n=0,1,2...). Многие источники первые две из этого ряда кислот (уксусную и пропионовую) не относят к жирным. В то же время в гастроэнтерологии уксусная, пропионовая, масляная , валериановая, капроновая (и их изомеры) относятся к подклассу жирных кислот - короткоцепочечным жирным кислотам (Минушкин О.Н.). Одновременно распространён подход, когда кислоты от капроновой до лауриновой относят к среднецепочечным жирным кислотам, с меньшим числом атомов углерода - к короткоцепочечным, с большим числом - к длинноцепочечным.

Короткоцепочечные жирные кислоты, содержащие не более 8 атомов углерода (уксусная, пропионовая, масляная, валериановая, капроновая и их изомеры), могут при кипячении улетучиваться с водяным паром, поэтому называются летучие жирные кислоты . Уксусная, пропионовая и масляная образуются при анаэробном брожении углеводов, тогда как метаболизм белков ведет к образованию карбоновых кислот с разветвленной углеродной цепью. Основным углеводным субстратом, доступным микрофлоре кишечника, служат непереваренные остатки оболочек растительных клеток, слизь. Являясь метаболическим маркером анаэробной условнопатогенной микрофлоры, летучие жирные кислоты у здоровых людей выполняют роль физиологических регуляторов моторной функции пищеварительного тракта. Однако при патологических процессах, затрагивающих микрофлору кишечника их баланс и динамика образования заметно изменяются.

В природе в основном встречаются жирные кислоты с чётным число атомов углерода . Это связано с их синтезом, при котором происходит попарное присоединение атомов углерода.

Название кислоты Полуразвёрнутая формула Схематическое изображение
Тривиальное Систематическое
Уксусная Этановая CH 3 -COOH
Пропионовая Пропановая CH 3 -CH 2 -COOH
Масляная
Бутановая CH 3 -(CH 2) 2 -COOH
Валериановая Пентановая CH 3 -(CH 2) 3 -COOH
Капроновая Гексановая CH 3 -(CH 2) 4 -COOH
Энантовая Гептановая CH 3 -(CH 2) 5 -COOH
Каприловая Октановая CH 3 -(CH 2) 6 -COOH
Пеларгоновая Нонановая CH 3 -(CH 2) 7 -COOH
Каприновая Декановая CH 3 -(CH 2) 8 -COOH
Ундециловая Ундекановая CH 3 -(CH 2) 9 -COOH
Лауриновая Додекановая CH 3 -(CH 2) 10 -COOH
Тридециловая Тридекановая CH 3 -(CH 2) 11 -COOH
Миристиновая Тетрадекановая CH 3 -(CH 2) 12 -COOH
Пентадециловая Пентадекановая CH 3 -(CH 2) 13 -COOH
Пальмитиновая Гексадекановая CH 3 -(CH 2) 14 -COOH
Маргариновая Гептадекановая CH 3 -(CH 2) 15 -COOH
Стеариновая Октадекановая CH 3 -(CH 2) 16 -COOH
Нонадециловая Нонадекановая CH 3 -(CH 2) 17 -COOH
Арахиновая Эйкозановая CH 3 -(CH 2) 18 -COOH
Генэйкоциловая Генэйкозановая CH 3 -(CH 2) 19 -COOH
Бегеновая Докозановая CH 3 -(CH 2) 20 -COOH
Трикоциловая Трикозановая CH 3 -(CH 2) 21 -COOH
Лигноцериновая Тетракозановая
CH 3 -(CH 2) 22 -COOH
Пентакоциловая Пентакозановая CH 3 -(CH 2) 23 -COOH
Церотиновая Гексакозановая CH 3 -(CH 2) 24 -COOH
Гептакоциловая Гептакозановая CH 3 -(CH 2) 25 -COOH
Монтановая Октакозановая CH 3 -(CH 2) 26 -COOH
Нонакоциловая Нонакозановая CH 3 -(CH 2) 27 -COOH
Мелиссовая Триаконтановая CH 3 -(CH 2) 28 -COOH
Гентриаконтиловая Гентриаконтановая CH 3 -(CH 2) 29 -COOH
Лацериновая Дотриаконтановая CH 3 -(CH 2) 30 -COOH
Насыщенные жирные кислоты в коровьем молоке
В составе триглицеридов молочного жира преобладают насыщенные кислоты, их общее содержание колеблется от 58 до 77 % (среднее составляет 65 %), достигая максимума зимой и минимума летом. Среди насыщенных кислот преобладают пальмитиновая, миристиновая и стеариновая. Содержание стеариновой кислоты повышается летом, а миристиновой и пальмитиновой - зимой. Это связано с разницей в кормовых рационах и физиологическими особенностями (интенсивностью синтеза отдельных жирных кислот) животных. По сравнению с жирами животного и растительного происхождения молочный жир характеризуется высоким содержанием миристиновой кислоты и низкомолекулярных летучих насыщенных жирных кислот - масляной, капроновой, каприловой и каприновой, в сумме составляющих от 7,4 до 9,5 % общего количества жирных кислот. Процентный состав основных жирных кислот (включая их триглицериды) в молочном жире (Богатова О.В., Догарева Н.Г.):
  • масляная - 2,5-5,0%
  • капроновая -1,0-3,5%
  • каприловая - 0,4-1,7%
  • каприновая - 0,8-3,6%
  • лауриновая -1,8-4,2%
  • миристиновая - 7,6-15,2%
  • пальмитиновая - 20,0-36,0%
  • стеариновая -6,5-13,7%
Антибиотическая активность насыщенных жирных кислот
Антибиотической активностью обладают все насыщенные жирные кислоты, но наиболее активными являются имеющие от 8 до 16 атомов углерода. Самая активная из них - ундециловая, которая при определённой концентрации подавляет рост Mycobacterium tuberculosis, Mycobacterium bovis, Escherichia coli , Salmonella paratyphi , Micrococcus luteus , Serratia marcescens, Shigella flexneri , Trichophyton gypseum . Антибиотическая активность насыщенных жирных кислот существенно зависит от кислотности среды. При рН=6 каприловая и каприновая кислоты действуют и на грамположительные, и на грамотрицательные, а лауриновая и миристиновая - только на грамположительные бактерии. При увеличении рН активность лауриновой кислоты по отношению к Staphylococcus aureus и другим грамположительным бактериям быстро падает. В отношении грамотрицательных бактерий ситуация противоположная: при рН менее 7 лауриновая кислота почти не действует, но становится очень активной при рН более 9 (Шемякин М.М.).

Среди насыщенных жирных кислот с чётным числом атомов углерода наибольшей антибиотческой активностью обладает лауриновая кислота. Она же является наиболее активной в отношении грамположительных микроорганизмов среди всех жирных кислот с короткой, до 12 атомов углерода, цепью. На грамотрицательные микроорганизмы бактерицидное действие оказывают жирные кислоты с короткой, до 6 атомов углерода, цепью (Рыбин В.Г., Блинов Ю.Г.).

Насыщенные жирные кислоты в лекарственных препаратах и БАДах
Ряд насыщенных жирных кислот, в частности, лауриновая и миристиновая кислоты обладают бактерицидной, вирицидной и фунгицидной активностью, приводящей к подавлению развития патогенной микрофлоры и дрожжевых грибков. Эти кислоты способны потенцировать в кишечнике антибактериальное действие антибиотиков, что позволяет существенно повысить эффективность лечения острых кишечных инфекций бактериальной и вирусно-бактериальной этиологии. Некоторые жирные кислоты, например, лауриновая и миристиновая, выступают и как иммунологический стимулятор при взаимодействии с бактериальными или вирусными антигенами, способствуя повышению иммунного ответа организма на внедрение кишечного патогена (Новокшенов и др.). Предположительно, каприловая кислота тормозит рост дрожжевых грибков и поддерживает нормальный баланс микроорганизмов в толстой кишке, мочеполовой системе и на коже, препятствует избыточному росту дрожжевых грибков и, прежде всего, рода Candida , не препятствуя размножению полезных сапрофитных бактерий. Однако эти качества насыщенных жирных кислот не используются в лекарственных препаратах (этих кислот практически нет среди действующих веществ лекарственных средств), в составе лекарств они находят применение как вспомогательные вещества, а на их вышеупомянутные и другие, возможно полезные для здоровья человека свойства, делают акцент производители БАДов и косметических средств.

Одно из немногих лекарственных препаратов, у которого в составе действующего вещества, высокоочищенного рыбьего жира, перечислены жирные кислоты, это Омегавен (код АТХ «B05BA02 Жировые эмульсии»). Среди других жирных кислот упомянуты насыщенные:

  • пальмитиновая кислота - 2,5-10 г (на 100 г рыбьего жира)
  • миристиновая кислота - 1-6 г (на 100 г рыбьего жира)
  • стеариновая кислота - 0,5-2 г (на 100 г рыбьего жира)
  • », содержащий статьи для профессионалов здравоохранения, затрагивающие данные вопросы.
    Насыщенные жирные кислоты в косметических и моющих средствах
    Насыщенные жирные кислоты очень широко используются в косметике, их включают в разнообразные кремы, мази, дерматотропические и моющие средства, туалетное мыло. В частности, пальмитиновая кислота и её производные используются в качестве структурообразователей, эмульгаторов, эмолентов. Масла с высоким содержанием пальмитиновой, миристиновой и/или стеариновой кислот используются для приготовления твёрдого мыла. Лауриновая кислота применяется в качестве антисептической добавки для кремов и средств по уходу за кожей, в качестве катализатора пенообразования в мыловарении. Каприловая кислота оказывает регулирующее действие на рост дрожжевых грибков, а также нормализует кислотность кожи (в том числе кожи головы), способствует лучшему насыщению кожи кислородом.

    Средство для умывания Men Expert L"Oreal содержит насыщенные жирные кислоты: миристиновую, стеариновую, пальмитиновую и лауриновую
    Крем-мыло Dove содержит насыщенные жирные кислоты: стеариновую и лауриновую

    Натриевые (реже калиевые) соли стеариновой, пальмитиновой, лауриновой (а также ) кислот - основные моющие компоненты твёрдого туалетного и хозяйственного мыла и многих других моющих средств.
    Насыщенные жирные кислоты в пищевой промышленности
    Жирные кислоты, в том числе насыщенные, применяются в пищевой промышленности в качестве пищевой добавки - эмульгатора, стабилизатора пены, глазирователя и пеногасителя, имеющей индекс «E570 Жирные кислоты». В этом качестве стеариновая кислота включена, например, в состав витаминно-минерального комплекса АлфаВит.

    У насыщенных жирных кислот имеются противопоказания, побочные действия и особенности применения, при употреблении в целях оздоровления или в составе лекарств или БАДов необходима консультация со специалистом.