Микозы

Способы деления соматических и половых клеток. Локализация и функции центромер хромосом – Хромосомы типа ламповых щёток

Формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии , которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Однако установлено, что повторов α-сателлита недостаточно для образования кинетохора, и что известны функциональные центромеры, не содержащие α-сателлитной ДНК.

Наследование

В определении местоположения центромеры у большинства организмов значительную роль играет эпигенетическое наследование . Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке. Предполагается, что должен быть какой-то первичный способ определения местоположения центромеры, даже если впоследствии её местоположение определяется эпигенетическими механизмами.

Строение

ДНК центромеры обычно представлена гетерохроматином , что, возможно, существенно для её функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетается с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

Функции

Центромера принимает участие в соединении сестринских хроматид , формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анэуплоидии , которая может иметь тяжелые последствия (например, синдром Дауна у человека, связанный с анэуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Установлено, однако, что повторов α-сателлита недостаточно для образования кинетохора и, что известны функционирующие центромеры, не содержащие α-сателлитной ДНК.

Наследование

В определении местоположения центромеры у большинства организмов значительную роль играет эпигенетическое наследование . Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке. Предполагается, что должен быть какой-то первичный способ определения местоположения центромеры, даже если впоследствии её местоположение определяется эпигенетическими механизмами.

Строение

ДНК центромеры обычно представлена гетерохроматином , что, возможно, существенно для ее функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетатся с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Центромера" в других словарях:

    Центромера … Орфографический словарь-справочник

    Кинетохор Словарь русских синонимов. центромера сущ., кол во синонимов: 1 кинетохор (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    - (от центр и греч. meros часть) (кинетохор) участок хромосомы, удерживающий вместе две ее нити (хроматиды). Во время деления центромеры направляют движение хромосом к полюсам клетки … Большой Энциклопедический словарь

    ЦЕНТРОМЕРА, часть ХРОМОСОМЫ, которая появляется только в процессе деления клеток. Когда хромосомы сокращаются во время МЕЙОЗА или МИТОЗА, центромеры возникают в виде сужений, не содержащих никаких генов. С их помощью хромосомы прикрепляются к… … Научно-технический энциклопедический словарь

    - (от лат. centrum, греч. kentron срединная точка, центр и греч. meros часть, доля), кинетохор, участок хромосомы, контролирующий её движение к разным полюсам клетки во время деления митоза или мейоза; место прикрепления к хромосоме нитей… … Биологический энциклопедический словарь

    центромера - Ограниченная зона в хромосоме, включающая сайт прикрепления веретена при митозе или мейозе Тематики биотехнологии EN centromere … Справочник технического переводчика

    Центромера - * цэнтрамера * centromere or kinetochore консервативный район эукариотической хромосомы, к которому присоединяются нити веретена (см.) во время митоза (см.). ДНК, образующая Ц., состоит из трех доменов (элементов) CDE I, CDE II и CDE III. CDE I и … Генетика. Энциклопедический словарь

    - (от центр и греч. méros часть) (кинетохор), участок хромосомы, удерживающий вместе две её нити (хроматиды). Во время деления центромеры направляют движение хромосом к полюсам клетки. * * * ЦЕНТРОМЕРА ЦЕНТРОМЕРА (от центр (см. ПРЯМОЕ ПРАВЛЕНИЕ) и … Энциклопедический словарь

    Centromere центромера. Участок моноцентрической хромосомы, в котором сестринские хроматиды соединены между собой и в области которой прикрепляются нити веретена, обеспечивающие движение хромосом к полюсам деления; обычно прицентромерные районы… … Молекулярная биология и генетика. Толковый словарь.

    центромера - centromera statusas T sritis augalininkystė apibrėžtis Pirminė chromosomos persmauga, prie kurios prisitvirtina achromatinės verpstės siūlai. atitikmenys: angl. centromere; kinetochore rus. кинетохор; центромера … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Центромера принимает участие в соединении сестринских хроматид , формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии , которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Однако установлено, что повторов α-сателлита недостаточно для образования кинетохора, и что известны функциональные центромеры, не содержащие α-сателлитной ДНК.

Наследование

В определении местоположения центромеры у большинства организмов значительную роль играет эпигенетическое наследование . Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке. Предполагается, что должен быть какой-то первичный способ определения местоположения центромеры, даже если впоследствии её местоположение определяется эпигенетическими механизмами.

Строение

ДНК центромеры обычно представлена гетерохроматином , что, возможно, существенно для её функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетается с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

Напишите отзыв о статье "Центромера"

Ссылки

Отрывок, характеризующий Центромера

Офицер опять обратился к Герасиму. Он требовал, чтобы Герасим показал ему комнаты в доме.
– Барин нету – не понимай… моя ваш… – говорил Герасим, стараясь делать свои слова понятнее тем, что он их говорил навыворот.
Французский офицер, улыбаясь, развел руками перед носом Герасима, давая чувствовать, что и он не понимает его, и, прихрамывая, пошел к двери, у которой стоял Пьер. Пьер хотел отойти, чтобы скрыться от него, но в это самое время он увидал из отворившейся двери кухни высунувшегося Макара Алексеича с пистолетом в руках. С хитростью безумного Макар Алексеич оглядел француза и, приподняв пистолет, прицелился.
– На абордаж!!! – закричал пьяный, нажимая спуск пистолета. Французский офицер обернулся на крик, и в то же мгновенье Пьер бросился на пьяного. В то время как Пьер схватил и приподнял пистолет, Макар Алексеич попал, наконец, пальцем на спуск, и раздался оглушивший и обдавший всех пороховым дымом выстрел. Француз побледнел и бросился назад к двери.
Забывший свое намерение не открывать своего знания французского языка, Пьер, вырвав пистолет и бросив его, подбежал к офицеру и по французски заговорил с ним.
– Vous n"etes pas blesse? [Вы не ранены?] – сказал он.
– Je crois que non, – отвечал офицер, ощупывая себя, – mais je l"ai manque belle cette fois ci, – прибавил он, указывая на отбившуюся штукатурку в стене. – Quel est cet homme? [Кажется, нет… но на этот раз близко было. Кто этот человек?] – строго взглянув на Пьера, сказал офицер.
– Ah, je suis vraiment au desespoir de ce qui vient d"arriver, [Ах, я, право, в отчаянии от того, что случилось,] – быстро говорил Пьер, совершенно забыв свою роль. – C"est un fou, un malheureux qui ne savait pas ce qu"il faisait. [Это несчастный сумасшедший, который не знал, что делал.]
Офицер подошел к Макару Алексеичу и схватил его за ворот.
Макар Алексеич, распустив губы, как бы засыпая, качался, прислонившись к стене.
– Brigand, tu me la payeras, – сказал француз, отнимая руку.
– Nous autres nous sommes clements apres la victoire: mais nous ne pardonnons pas aux traitres, [Разбойник, ты мне поплатишься за это. Наш брат милосерд после победы, но мы не прощаем изменникам,] – прибавил он с мрачной торжественностью в лице и с красивым энергическим жестом.
Пьер продолжал по французски уговаривать офицера не взыскивать с этого пьяного, безумного человека. Француз молча слушал, не изменяя мрачного вида, и вдруг с улыбкой обратился к Пьеру. Он несколько секунд молча посмотрел на него. Красивое лицо его приняло трагически нежное выражение, и он протянул руку.
– Vous m"avez sauve la vie! Vous etes Francais, [Вы спасли мне жизнь. Вы француз,] – сказал он. Для француза вывод этот был несомненен. Совершить великое дело мог только француз, а спасение жизни его, m r Ramball"я capitaine du 13 me leger [мосье Рамбаля, капитана 13 го легкого полка] – было, без сомнения, самым великим делом.
Но как ни несомненен был этот вывод и основанное на нем убеждение офицера, Пьер счел нужным разочаровать его.
– Je suis Russe, [Я русский,] – быстро сказал Пьер.
– Ти ти ти, a d"autres, [рассказывайте это другим,] – сказал француз, махая пальцем себе перед носом и улыбаясь. – Tout a l"heure vous allez me conter tout ca, – сказал он. – Charme de rencontrer un compatriote. Eh bien! qu"allons nous faire de cet homme? [Сейчас вы мне все это расскажете. Очень приятно встретить соотечественника. Ну! что же нам делать с этим человеком?] – прибавил он, обращаясь к Пьеру, уже как к своему брату. Ежели бы даже Пьер не был француз, получив раз это высшее в свете наименование, не мог же он отречься от него, говорило выражение лица и тон французского офицера. На последний вопрос Пьер еще раз объяснил, кто был Макар Алексеич, объяснил, что пред самым их приходом этот пьяный, безумный человек утащил заряженный пистолет, который не успели отнять у него, и просил оставить его поступок без наказания.
Француз выставил грудь и сделал царский жест рукой.
– Vous m"avez sauve la vie. Vous etes Francais. Vous me demandez sa grace? Je vous l"accorde. Qu"on emmene cet homme, [Вы спасли мне жизнь. Вы француз. Вы хотите, чтоб я простил его? Я прощаю его. Увести этого человека,] – быстро и энергично проговорил французский офицер, взяв под руку произведенного им за спасение его жизни во французы Пьера, и пошел с ним в дом.

В зависимости от функционального и физиологического состояний клетка может делиться разными способами. Способы деления соматических клеток : митоз, амитоз или эндомитоз. Половые клетки делятся мейозом.

Митоз непрямое деление клетки, сопровождающееся спирализацией хромосом. В митозе выделяют несколько фаз:

I Профаза (от греч. «pro» - до, «phases» - появление). Происходит спирализация и укорочение хромосом. Ядрышко и ядерная оболочка исчезают, центриоли расходятся к полюсам клетки, формируется веретено деления. Хромосомы состоят из двух хроматид, соединенных центромерой. Профаза – самая продолжительная фаза митоза. Набор генетического материала – 2n 4с.

II Метафаза (от греч. «meta» - середина). Хромосомы, состоящие из двух хроматид, выстраиваются в экваториальной плоскости клетки. Нити веретена деления прикрепляются к центромерам. В веретене деления выделяются два типа нитей: 1) хромосомные, связанные с первичными перетяжками хромосом, 2) центросомные, соединяющие полюса деления. Набор генетического материала в этот момент – 2n 4с.

III Анафаза (от греч. «ana» - вверх). Самая короткая фаза деления. Центромеры хромосом разъединяются, хроматиды (дочерние хромосомы) становятся самостоятельными. Нити веретена деления, прикрепленные к центромерам, тянут дочерние хромосомы к полюсам клетки. Набор генетического материала – 2n 2с.

IV Телофаза. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Хромосомы деспирализуются (раскручиваются). У каждого полюса вокруг хромосом образуется ядерная оболочка и ядрышки. Нити веретена деления распадаются. Цитоплазма клетки разделяется (цитокинез = цитотомия). Образуются две дочерние клетки. Набор генетического материала дочерних клеток – 2n 2с.

Разделение цитоплазмы перетяжкой в разных клетках происходит по-разному. В клетках животных впячивание цитоплазматической мембраны внутрь во время разделения клетки происходит от краев к центру. В клетках растений по центру образуется перегородка, которая затем увеличивается по направлению к стенкам клетки.

Биологическое значение митоза. В результате митоза происходит точное распределение генетического материала между двумя дочерними клетками. Дочерние клетки получают такой же набор хромосом, который был у материнской клетки – диплоидный. Митоз обеспечивает поддержание постоянства числа хромосом в ряду поколений и служит клеточным механизмом роста, развития организма, регенерации и бесполого размножения. Митоз является основой бесполого размножения организмов. Число образующихся в процессе митоза дочерних клеток – 2.

Амитоз (от греч. «а» - отрицание, «mitos» - нить) – прямое деление клетки, при котором ядро находится в интерфазном состоянии. Хромосомы не выявляются. Деление начинается с изменений в ядрышках. Крупные ядрышки делятся перетяжкой. Вслед за этим делится ядро. Ядро может разделяться лишь одной перетяжкой или фрагментироваться. Образующиеся дочерние ядра могут быть неравной величины.

Т.о. амитоз приводит к появлению двух клеток с ядрами разной величины и количества. Часто после амитоза две клетки не образуются, т.е. после делений ядра разделения цитоплазмы (цитокинеза) не происходит. Образуются 2-х и многоядерные клетки. Амитоз встречается в отживающих, дегенерирующих соматических клетках.

Эндомитоз – процесс, при котором удвоение хромосом в клетке не сопровождается делением ядра. Вследствие этого в клетке происходит умножение числа хромосом, иногда в десятки раз по сравнению с исходным числом. Эндомитоз встречается в интенсивно функционирующих клетках.

Иногда воспроизведение хромосом происходит без увеличения их числа в клетке. Каждая хромосома многократно удваивается, но дочерние хромосомы остаются связанными между собой (явление политении). В результате образуются гигантские хромосомы.

Мейоз – особая форма клеточного деления, при которой из диплоидных материнских половых клеток образуются дочерние гаплоидные. Слияние мужских и женских гаплоидных половых клеток в процессе оплодотворения приводит к появлению зиготы с диплоидным набором хромосом. В результате развивающийся из зиготы дочерний организм имеет такой же диплоидный кариотип, который был у материнского организма.

Мейоз включает два последовательных деления.

I мейотическое деление называют редукционным. Оно включает 4 стадии.

Профаза I. Самая продолжительная стадия. Ее условно делят на 5 стадий.

1) Лептотена. Увеличивается ядро. Начинается спирализация хромосом, каждая из которых состоит из двух хроматид.

2) Зиготена. Происходит конъюгация гомологичных хромосом. Гомологичными называют хромосомы, имеющие одинаковые форму и размеры. Хромосомы притягиваются и прикладываются друг к другу по всей длине.

3) Пахитена. Заканчивается сближение хромосом. Сдвоенные хромосомы называют бивалентами. Они состоят из 4-х хроматид. Число бивалентов = гаплоидному набору хромосом клетки. Продолжается спирализация хромосом. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называют кроссинговером (перекрест хромосом).

4) Диплотена. Возникают силы отталкивания хромосом. Хромосомы, составляющие биваленты, начинают отходить друг от друга. При этом остаются соединенными между собой в нескольких точках – хиазмах. В этих местах может произойти кроссинговер. Происходит дальнейшая спирализация и укорочение хромосом.

5) Диакинез. Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются, нити веретена деления расходятся к полюсам. Набор генетического материала – 2n 4с.

Метафаза I. Биваленты хромосом располагаются по экватору клетки, образуя метафазную пластинку. К ним прикрепляются нити веретена деления. Набор генетического материала – 2n 4с.

Анафаза I. Хромосомы расходятся к полюсам клетки. К полюсам попадают только по одной из пары гомологичных хромосом. Набор генетического материала – 1n 2с.

Телофаза I. Число хромосом у каждого полюса клетки становится гаплоидным. Хромосомы состоят из двух хроматид. У каждого полюса вокруг группы хромосом образуется ядерная оболочка, хромосомы деспирализуются, ядро становится интерфазным. Набор генетического материала – 1n 2с.

После телофазы I в животной клетке начинается цитокинез, растительной клетке – формирование клеточной стенки.

Интерфаза II есть только у животных клеток. При этом удвоения ДНК нет.

II мейотическое деление называют эквакционным. Оно подобно митозу. Отличие от митоза в том, что из хромосом, имеющих две хроматиды, образуются хромосомы, состоящие из одной хроматиды. II мейотическое деление отличается от митоза еще и тем, что в клетке во время деления формируются две группы хромосом и соответственно – два веретена деления. Набор генетического материала в профазе II – 1n 2с, начиная с метафазы II - 1n 1с.

Биологическое значение мейоза. Приводит к уменьшению числа хромосом вдвое, что обусловливает постоянство видов на Земле. Если бы число хромосом не уменьшалось, то в каждом последующем поколении происходило бы увеличение хромосом вдвое. Обеспечивает разнородность гамет по генному составу (в профазе может происходить кроссинговер, метафазе – свободное перекомбинирование хромосом). Случайная встреча половых клеток (=гамет) – сперматозоида и яйцеклетки с разным набором генов обусловливает комбинативную изменчивость. Гены родителей во время оплодотворения комбинируются, поэтому у их детей могут появиться признаки, которых не было у родителей. Число образующихся клеток - 4.

К середине прошлого столетия многочисленные цитологические исследования показали определяющую роль центромеры в морфологии хромосом. Позднее установили, что центромера вместе с кинетохором (структурой, состоящей в основном из белков) ответственна за правильное расхождение хромосом в дочерние клетки в ходе клеточного деления. Направляющая роль центромеры в этом процессе очевидна: ведь именно к ней прикрепляется веретено деления, которое вместе с клеточными центрами (полюсами) составляет аппарат клеточного деления. Благодаря сокращению нитей веретена хромосомы движутся во время деления к полюсам клетки.

Обычно описывают пять стадий клеточного деления (митоза). Для простоты мы остановимся на трех основных этапах в поведении хромосом делящейся клетки (рис.2). На первом этапе происходит постепенное линейное сжатие и утолщение хромосом, затем образуется веретено деления клетки, состоящее из микротрубочек. На втором хромосомы постепенно продвигаются к центру ядра и выстраиваются вдоль экватора, вероятно, чтобы облегчить присоединение микротрубочек к центромерам. При этом ядерная оболочка исчезает. На последнем этапе половинки хромосом - хроматиды - расходятся. Создается впечатление, что микротрубочки, прикрепленные к центромерам, как буксир, тянут хроматиды к полюсам клетки. С момента расхождения бывшие сестринские хроматиды называются дочерними хромосомами. Они достигают полюсов веретена и собираются вместе в параллельном порядке. Образуется ядерная оболочка.

Рис. 2. Основные этапы митоза.
Слева направо: компактизация хромосом, образование веретена деления; выстраивание хромосом вдоль экватора клетки,
прикрепление веретена деления к центромерам; движение хроматид к полюсам клетки.

При тщательном наблюдении можно заметить, что в процессе клеточного деления в каждой хромосоме центромера находится на постоянной позиции. Она поддерживает тесную динамическую связь с клеточным центром (полюсом). Деление центромер происходит одновременно во всех хромосомах.

Разработанные в последние годы методы секвенирования позволили определить первичную структуру ДНК протяженных участков центромер человека, плодовой мухиDrosophila и растения Arabidopsis . Оказалось, что в хромосомах и человека, и растения центромерная активность связана с блоком тандемно организованных повторов (мономеров) ДНК, близких по размеру (170-180 нуклеотидных пар, нп). Такие участки называют сателлитной ДНК. У многих видов, в том числе и эволюционно далеких друг от друга, размер мономеров почти не отличается: различные виды обезьян - 171 нп, кукуруза - 180 нп, рис - 168 нп, насекомое хирономус - 155 нп. Возможно, это отражает общие требования, необходимые для центромерной функции.

Несмотря на то, что третичная структура центромер человека и арабидопсиса организована одинаково, первичные последовательности нуклеотидов (или порядок нуклеотидов) в их мономерах оказались совершенно разными (рис.3). Это удивительно для района хромосомы, выполняющего столь важную и универсальную функцию. Однако при анализе молекулярной организации центромер у дрозофилы обнаружили определенную структурную закономерность, а именно наличие участков из мономеров примерно одного размера. Так, у дрозофилы центромера Х-хромосомы состоит в основном из двух типов очень коротких простых повторов (ААТАТ и ААGАG), прерываемых ретротранспозонами (мобильными элементами ДНК) и “островками” более сложной ДНК. Все эти элементы нашли в геноме дрозофилы и вне центромер, однако последовательностей ДНК, характерных для каждой центромеры, у них не обнаружили. Значит, сами по себе центромерные последовательности ДНК недостаточны и необязательны для образования центромеры.

Рис. 3. Структура ДНК в центромерах человека и растения.

Прямоугольники соответствуют тандемно организованным мономерам с идентичной последовательностью нуклеотидов внутри (первичная структура ДНК). У разных видов первичная структура ДНК мономеров различается, а вторичная представляет собой спираль. Последовательность мономеров отражает структурную организацию ДНК более высокого уровня.

Это предположение подтверждается и проявлением центромерной активности за пределами нормальных центромер. Такие неоцентромеры ведут себя как обычные центромеры: образуют цитологически различимую перетяжку и формируют кинетохор, связывающий белки. Однако анализ ДНК двух неоцентромер человека и обычной центромеры общих последовательностей не выявил, что говорит о возможной роли других структурных компонентов хромосомы. Ими могут быть гистоновые и негистоновые белки, которые связываются с ДНК, формируя нуклеосомную структуру хроматина.

Функциональную роль центромерной структуры хроматина подтверждает присутствие специфических для каждого биологического вида варианта гистона Н3 в центромерном хроматине: у человека они названы CENP-A, у растений - CENH3. Среди множества имеющихся в кинетохоре белков только два, СЕNН3 и центромерный белок С (СЕNР-С), непосредственно связываются с ДНК. Возможно, именно CENH3, взаимодействуя с другими гистонами (Н2А, Н2В и Н4), формирует и определяет специфический для центромер тип нуклеосом. Такие нуклеосомы могут служить своего рода якорями для образования кинетохора. Варианты гистона Н3 в центромерах различных видов подобны канонической молекуле гистона Н3 в участках взаимодействия с другими гистоновыми белками (Н2А, Н2В, Н4). Однако участок центромерного гистона Н3, взаимодействующий с молекулой ДНК, видимо, находится под действием движущего отбора. Как уже говорилось, первичная структура центромерной ДНК отличается между видами, и было высказано предположение, что центромерный гистон Н3 коэволюционирует вместе с центромерной ДНК, в частности у дрозофилы и арабидопсиса .

Обнаружение центромерного гистона Н3 породило крайнюю точку зрения, согласно которой центромерная функция и ее полная независимость от первичной структуры ДНК определяется нуклеосомной организацией и этим гистоном. Но достаточно ли этих факторов для полноценной активности центромеры? Модели, игнорирующие роль первичной структуры ДНК, должны предполагать случайное распределение изменений в структуре центромерной ДНК в различных популяциях в отсутствие отбора. Однако анализ сателлитной ДНК в центромерах человека и Arabidopsis выявил консервативные районы, так же как и районы с более высокой, чем средняя, вариабильностью, что указывает на давление отбора на центромерную ДНК. Кроме того, искусственные центромеры удалось получить только с a-сателлитными повторами человека, амплифицированными из природных центромер, но не из a-сателлитов прицентромерных районов хромосом.

Меньше принципиальных трудностей для объяснения встречают модели, в которых решающим фактором в определении позиции центромеры (сохраняющейся от поколения к поколению) и ее функций служит третичная (или даже более высокого порядка) структура ДНК. Ее консерватизм допускает большие вариации в последовательности нуклеотидов и не исключает тонкую подстройку первичной структуры.

Хеникофф с коллегами предложили модель, описывающую координированную эволюцию ДНК и белков и приводящую к появлению оптимально функционирующих центромер на примере деления женских половых клеток. Как известно, в процессе мейоза одна родительская клетка посредством следующих друг за другом двух делений дает начало четырем дочерним клеткам. Впоследствии только одна из них превращается в зрелую женскую половую клетку (гамету), передающую генетическую информацию следующему поколению, тогда как три других клетки отмирают. Согласно этой модели, в процессе эволюции вследствие мутаций и других механизмов в хромосомах могут возникать центромеры с более протяженными тяжами мономеров сателлитной ДНК или с первичной структурой нуклеотидов, более способствующей связыванию и координированной работе со специфическими формами гистонов CENH3 и СЕNР-С. При этом у одних организмов (арабидопсис, дрозофила) доказательства для положительного давления отбора получены для CENH3, тогда как для других видов (злаки, млекопитающие) для СЕNР-С (рис.4,а). В итоге такие центромеры с усовершенствованным кинетохором становятся “сильнее” и могут присоединять большее число микротрубочек веретена деления (рис.4,б). Если таких “сильных” центромер оказывается в гаметах больше, то происходит процесс мейотического драйва, который увеличивает количество таких центромер, и новый вариант фиксируется в популяции.

Рис. 4. Модель, объясняющая эволюцию центромер.

Вверху - центромеры (серые овалы) содержат специализированный набор белков (кинетохор), включающий гистоны CENH3 (H) и CENP-C (C), которые в свою очередь взаимодействуют с микротрубочками веретена деления (красные линии). В различных таксонах один из этих белков эволюционирует адаптивно и согласованно с дивергенцией первичной структуры ДНК центромер.

Внизу - изменения в первичной структуре или организации центромерной ДНК (темно-серый овал) может создавать более сильные центромеры, что выражается в большем количестве присоединяемых микротрубочек.

Понять механизмы формирования и активности центромерных районов хромосом помогает сравнительная геномика. Уникальный пример разнообразной структуры центромер - хромосома 8 в геноме риса. В ней наряду с сателлитным повтором ДНК и ретротранспозонами обнаружены активно транскрибируемые гены; 48 из них имели последовательности с высокой гомологией к известным белкам . Эти находки опровергают сложившееся на основе изучения центромер человека, дрозофилы и арабидопсиса мнение, что в центромерах нет активно работающих генов.

Если в молекулярной структуре центромер различных видов эукариот присутствуют некоторые универсальные характеристики (организация ДНК в виде тандемных, относительно коротких мономеров и специфические для данных локусов белки хроматина), то в размерах этих районов трудно выявить какие-либо закономерности. Так, у дрожжей Saccharomyces cerevisiae за минимальную функциональную центромеру принимают участок ДНК в 125 нп, а у дрожжей Schizosaccharomyces pombe она значительно сложнее и длиннее (от 40 до 120 тыс. нп), имеет несколько уровней организации. У человека основной компонент центромер хромосом - a-сателлитная ДНК - образует длинные тяжи тандемно организованных мономеров (от 250 тыс. до 4 млн нп). Среди 12 хромосом риса в хромосоме 8 длина тяжа с сателлитом CentO наименьшая (~64 тыс. нп); в ней определили позицию центромеры и ее примерный размер в 2 млн нп . Удалось получить полную последовательность ДНК этого центромерного района и внутри него определить участок (~750 тыс. нп), где непосредственно формируется кинетохор. В этом районе находится основной кластер CentO.

Удивительная пластичность центромер, в частности активно работающие гены, обнаруженные в центромере хромосомы 8 риса, предполагает отсутствие строгой границы между центромерой и остальной частью хромосомы и даже возможность рассеянной структуры центромерного хроматина. Однако против существования нескольких кластеров в районе хромосомной перетяжки говорят недавно опубликованные данные о наличии хроматинового барьера между собственно центромерой и прицентромерным гетерохроматином у дрожжей Schizosaccharomyces pombe . Барьер представляет собой ген тРНК аланина. Делеция или модификация барьерной последовательности ведет к выходу прицентромерного гетерохроматина за свои обычные границы. Более того, отсутствие барьера вызывает ненормальное расхождение хромосом в мейозе. Безусловно, следует помнить, что эти интереснейшие результаты касаются пока только одного вида дрожжей.