Раздражения

Кинетическая периметрия. Что такое периметрия глаза


Перечень практических навыков и данные по технике их проведения и интерпретации полученных результатов.

  1. Исследование цветоощущения по полихроматическим
таблицам Е.Б. Рабкина……………………………………………………………………...1

  1. Исследование остроты зрения по таблицам Ландольта и Поляка……………2

  2. Исследование поля зрения на периметре Ферстера………………………………3

  3. Исследование поля зрения контрольным методом………………………………..4

  4. Определение характера зрения………………………………………………………..5

  5. Осмотр при фокальном освещении…………………………………………………..6

  6. Осмотр в проходящем свете………………………………………………………….7

  7. Исследование век…………………………………………………………………………8

  8. Пальпаторная офтальмотонометрия………………………………………………9

  9. Исследование рефракции глаза субъективным и объективным методами.10

  10. Измерение угла косоглазия по Гиршбергу………………………………………….11

  11. Исследование слезопродукции………………………………………………………..12

  12. Исследование слезооттока. Массаж слезного мешка…………………………13

  13. Подбор очковой коррекции при аметропиях и пресбиопии…………………….14

1.Исследование цветоощущения по полихроматическим

таблицам Е.Б. Рабкина

В основе построения таблиц лежит принцип уравнения яркости и насыщенности. Каждая таблица состоит из кружков основного и дополнительного цветов. Из кружков основного цвета разной насыщенности и яркости составлена цифра или фигура, которая легко различима нормальным трихроматом и не видна пациентам

1. Исследуемый сидит спиной к источнику освещения (окну или лампам дневного света).

Уровень освещенности должен быть в пределах 500-1000 лк.

2. Таблицы предъявляют с расстояния I метра, на уровне глаз исследуемого, располагая их вертикально.

3. Длительность экспозиции каждого теста таблицы 3-5 секунд, но не более 10 секунд. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

4. Для выявления врожденной патологии исследование проводят бинокулярно; для выявления приобретенной патологии исследуют поочередно правый и левый глаз.

Оценку результатов исследования по полихроматическим таблицам Е.Б. Рабкина проводят в следующей последовательности.

1) Все таблицы (25) основной серии названы правильно - у исследуемого нормальная трихромазия.

2) Неправильно названы таблицы в количестве от I до 12 аномальная трихромазия.

Основной признак, позволяющий отличить аномальную трихромазию от дихромазии – правильное чтение одной или нескольких таблиц из группы: 3,7,8,9,11,12,13,16-19.

4) Для точного определения вида и степени цветоаномалии результаты исследования по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам Е.Б. Рабкина. Пациента направляют к офтальмологу.


  1. Исследование остроты зрения по таблицам Ландольта и Поляка
Оптотипы Ландольта

1. Пациент садится на расстоянии 5 метров от таблицы Ландольта. Исследование проводят попеременно: сначала правого (OD), зачем левого (OS) глаза. Второй глаз закрывают щитком (листом бумаги, ладонью).

2. Знаки таблицы предъявляют в течение 2-3 с. Следят за тем, чтобы указка не мешала пациенту определять направление разрезов в оптотипах.

3. Остроту зрения характеризуют знаки наименьшего размера, которые исследуемый различает. При чтении первых 7 строк ошибок быть не должно, начиная с 8-й строки одной ошибкой в строке пренебрегают (острота зрения указана в каждом ряду справа от оптотипов).

Пример регистрации данных: Visus OD = 1,0; Visus OS = 0,6.

4. При остроте зрения менее 0,1 (исследуемый не видит с расстояния 5 метров 1-й строки таблицы) следует подвести его на расстояние (d), с которого он сможет назвать знаки 1-го ряда (нормальный глаз различает знаки этого ряда с 50 м; D = 50 м). Расчет по формуле Снеллена:

Где Visus (Vis, V) - острота зрения; d - расстояние, с которого исследуемый читает 1-й ряд;

D - расчетное расстояние, с которого детали знаков данного ряда видны под углом зрения в 1 минуту (оно указано в каждом ряду слева от оптотипов). Удобнее демонстрировать раздвинутые пальцы руки врача с разных расстояний, т.к. угловые размеры толщины пальцев примерно соответствуют размерам разрезов колец 1-го ряда. Больной должен правильно определить количество показываемых пальцев.

5. Если пациент различает пальцы с расстояния 50 см - Visus =0,01, при счете пальцев на более близком расстоянии - Visus = счет пальцев у лица .

7. Самой низкой остротой зрения является способность глаза отличать свет от темноты; это проверяется в затемненном помещении при освещении глаза ярким световым пучком. Если исследуемый видит свет, то острота зрения равна светоощущению (Visus OD = 1/∞, или perceptio lucis). Наводя на глаз пучок света с разных направлений (сверху, снизу, справа, слева), проверяют, как сохранилась способность отдельных участков сетчатки воспринимать свет. Правильные ответы указывают на правильную проекцию света (Visus OD = l/∞ proectio lucis certa). Если пациент не может определить локализацию источника света хотя-бы с 1-й стороны - Visus = l/∞ proectio lucis incerta. При отсутствии светоощущения - Visus = 0.

^ Оптотипы Поляка

Используют при Visus менее 0,1. Они представляют из себя кольца Ландольта либо параллельные полосы разных размеров, наклеенные на картон. Каждый оптотип имеет заранее рассчитанные расстояния до больного с соответствующим значением Visus. Острота зрения определяется с точностью до 0,01. Подобная точность необходима для определения динамики Visus у пациентов с низким зрением, для решения вопросов об установлении группы инвалидности по зрению и в случаях аггравации и симуляции.


  1. ^ Исследование поля зрения на периметре Ферстера
Периметрия - это метод исследования поля зрения на сферической поверхности с целью определения его границ.

Исследование проводят при помощи специальных приборов - периметров, имеющих вид дуги или полусферы. Широко распространен недорогой периметр Ферстера. Это дуга 180°, покрытая с внутренней стороны черной матовой краской и имеющая на наружной поверхности деления на градусы - от 0 в центре до 90 на периферии. Для определения наружных границ поля зрения используют белые объекты диаметром 3-5 мм.

Исследуемый сидит спиной к окну (освещенность дуги периметра дневным светом не менее 160 лк), подбородок и лоб размещает на специальной подставке и фиксирует одним глазом белую метку в центре дуги. Второй глаз пациента закрывают. Объект ведут по дуге от периферии к центру со скоростью 2 см/с. Исследуемый сообщает о появлении объекта, а врач замечает, какому делению дуги соответствует в это время положение объекта.

Это и будет наружная граница поля зрения для данного меридиана. Определение наружных границ поля зрения проводят по 8 (через 45 °) или (лучше) по 12 (через 30 °) меридианам.

Нормальные границы поля зрения на белый цвет в среднем составляют: сверху - 55°, сверху снаружи - 65°, снаружи - 90°, снизу снаружи - 90°, снизу - 70°, снизу кнутри - 45°, кнутри - 55°, сверху кнутри - 50°.

Изменения поля зрения могут проявиться в виде выпадения в нем отдельных участков (скотом). Для точного исследования лучше всего пользоваться кампиметрическим методом . Больного помещают на расстоянии 1 м перед черной доской (кампиметром) размером 2х2 м. Для фиксации служит точка фиксации белого цвета в центре доски. Исследование производят объектом белого цвета (кружок диаметром 1 или 3 мм). Иногда используют цветные объекты, что необходимо для ранней диагностики патологии сетчатой и зрительного нерва. Объект ведут от периферии к центру или от центра к периферии по горизонтали, пересекающей фиксационную точку в поле зрения. Отмечается момент исчезновения объекта. Затем исследуют границы скотомы по вертикали и в промежуточных меридианах. Таким образом, можно определить форму и угловые размеры патологических скотом и слепого пятна. Последнее имеет важное диагностическое и прогностическое значение. Исследуют отдельно каждый глаз.

^ 4. Исследование поля зрения контрольным методом

1. Врач и исследуемый сидят друг против друга на расстоянии 50-60 см.

2. Исследуемый закрывает ладонью левый глаз, а врач закрывает свой правый глаз. Открытым правым глазом пациент фиксирует находящийся против него открытый левый глаз врача.

3. Объект (слегка шевелящиеся пальцы врача) двигают от периферии к центру на равном расстоянии между врачом и пациентом, а при определении височной границы поля зрения объект предъявляют сбоку, со стороны исследуемого глаза, из-за головы больного. Объект двигают до точки фиксации сверху, снизу, с височной и носовой сторон, а также в промежуточных радиусах.

При оценке результатов исследования необходимо учитывать, что эталоном является поле зрения врача (оно не должно иметь патологических изменений). Поле зрения пациента считают нормальным, если врач и пациент одновременно замечают появление объекта и видят его во всех участках поля зрения

В случае, если пациент заметил появление объекта в каком-то радиусе позже врача, то поле зрения оценивают как суженное с соответствующей стороны. Если в поле зрения больного объем исчезает на каком-то участке, то имеется скотома.


  1. Определение характера зрения
Опыт Соколова

1. Правой рукой пациент держит перед правым глазом свернутый в трубку лист бумаги.

2. Ребро ладони левой руки исследуемый располагает на боковой поверхности конца трубки.

3. Оба глаза пациента открыты.

Оценку результатов исследования проводят следующим образом.

При бинокулярном зрении пациент видит «дыру» в ладони, сквозь которую видна та же картина, что и через трубку. При монокулярном либо одновременном зрении «дыра» в ладони отсутствует.

^ Исследование характера зрения на 4-х точечном приборе

Исследование на четырехточечном цветовом приборе

Методика исследования

1. С помощью 4-точечного цветового прибора или проектора знаков пациенту предъявляют с расстояния 5 метров 4 кружка -2 зеленых (3), красный (К) и белый (Б).

2. Используют красно-зеленые очки (перед правым глазом - красный светофильтр, перед левым - зеленый).

3. При аномалии рефракции у пациента исследование проводят дважды - без коррекции и с коррекцией.

При оценке результатов исследования учитывают следующее.

Если исследуемый видит 4 кружка - 2 зеленых и 2 – красных либо 3 зеленых и 1 красный, это свидетельствует о наличии у пациента бинокулярного зрения.

Если пациент видит 5 кружков - 3 зеленых и 2 красных, то зрение одновременное.

В случае, если исследуемый видит 2 красных кружка (то есть видит только правый глаз) или 3 зеленых (то есть видит только левый глаз), то зрение монокулярное.


  1. ^ Осмотр при фокальном освещении
Метод бокового освещения используют при исследовании конъюнктивы век и глазного яблока, склеры, роговицы, передней камеры, радужки, зрачка и передней поверхности хрусталика. Этот метод позволяет выявить даже незначительные изменения в переднем отделе глаза.

Исследование проводят в затемненной комнате. Настольную лампу устанавливают на уровне глаз сидящего пациента, на расстоянии 40-50 см, слева и немного спереди от него. Голову пациента поворачивают в сторону источника света. В правую руку врач берет лупу 13 D и держит ее на расстоянии 7-8 см от глаза пациента, перпендикулярно лучам, идущим от источника света, фокусирует свет на том участке глаза, который подлежит осмотру.

Благодаря контрасту между ярко освещенным небольшим участком глаза и неосвещенными соседними его частями изменения лучше видны. Необходимо следить, чтобы рука не дрожала и не смещался фокус. Для этого при осмотре левого глаза руку фиксируют, упираясь мизинцем правой руки на скуловую кость, при осмотре правого глаза - на спинку носа или лоб.

Вместо настольной лампы и лупы для освещения можно использовать электрический фонарик. Для рассматривания патологического участка можно пользоваться бинокулярной лупой.

Определение дефектов эпителия роговицы проводят с помощью закапывания в конъюнктивальный мешок 1 % раствора флюоресцеина. При этом они окрашиваются в зеленый цвет.

Исследование зрачковых реакций. В норме зрачки одинаковые по величине и имеют равномерно округлую форму. При освещении одного глаза происходит сужение зрачка (прямая реакция зрачка на свет), а также сужение зрачка другого глаза (содружественная реакция зрачка на свет). Сужение зрачка называется миозом, расширение - мидриазом, разность в величине зрачков - анизокорией. Встречаются такие врожденные изменения, как смещение зрачка - корэктопия или наличие нескольких зрачков - поликория.

Зрачковую реакцию считают «живой», если под влиянием света зрачок быстро сужается, и «вялой», если реакция зрачка замедленна и недостаточна. Прямая реакция зрачка на свет может отсутствовать (при полной слепоте глаза, задних синехиях и при нейросифилисе).

Реакция зрачков на аккомодацию и конвергенцию проверяется при переводе взгляда с отдаленного предмета на палец врача, который он держит на расстоянии 20-30 см от лица. В норме зрачки суживаются равномерно.


  1. ^ Осмотр в проходящем свете
Для исследования прозрачности оптических сред глаза применяется осмотр в проходящем свете. Нарушения прозрачности роговицы и передних отделов хрусталика видны при боковом освещении глаза, а нарушения прозрачности задних отделов хрусталика и стекловидного тела - в проходящем свете.

При проведении исследования в проходящем свете пациент и врач находятся в затемненной комнате. Осветительную лампу (60-100 Вт) располагают слева и сзади от пациента, врач сидит напротив. С помощью офтальмоскопического зеркала, расположенного перед правым глазом врача, в зрачок обследуемого глаза направляется пучок света. Исследователь рассматривает зрачок через отверстие офтальмоскопа. Отраженные от глазного дна (преимущественно от сосудистой оболочки) лучи имеют розовый цвет. При прозрачных преломляющих средах глаза врач видит равномерное розовое свечение зрачка. Это свечение называется рефлексом с глазного дна. Различные препятствия на пути прохождения светового пучка, то есть помутнения сред глаза, задерживают часть отраженных от глазного дна лучей, и на фоне розового зрачка эти помутнения видны как темные пятна разной формы и величины. При движении исследуемого глаза помутнения хрусталика перемещаются до тех пор, пока двигается глаз. Помутнения в стекловидном теле, обычно, продолжают беспорядочно перемещаться и после остановки глаза. Если помутнение расположено в роговице или перед плоскостью зрачка, то при движении исследуемого глаза оно будет смещаться в ту же сторону. При расположении помутнения в задних слоях хрусталика и стекловидном теле, помутнение сместится в сторону противоположную движению глаза. Точно определить глубину залегания и интенсивность помутнений в роговице и хрусталике позволяет биомикроскопия.


  1. ^ Исследование век
Проводят при общем осмотре, фокальном освещении и при биомикроскопии.

При осмотре век следует обращать внимание на их положение, подвижность, состояние их кожного покрова, переднего и заднего ребра, интермаргинального пространства, выводных протоков мейбомиевых желез, ресниц, наличие новообразований, травматических повреждений.

В норме кожа век тонкая, нежная, под ней расположена рыхлая подкожная клетчатка, вследствие чего легко развиваются отеки и гематомы.

При общих заболеваниях (болезни почек и сердечно-сосудистой системы) и аллергическом отеке Квинке отеки кожи век двусторонние, кожа век светлая.

Цвет кожи век от розового до ярко-красного наблюдается при воспалительных процессах:

Века (абсцесс, ячмень, укус насекомого);

Конъюнктивы в сочетании с хемозом (отек конъюнктивы глазного яблока);

Глазного яблока (радужка, цилиарное тело, все оболочки глаза, инфицированные ранения глаза);

Слезного мешка или слезной железы;

Орбиты или окружающих ее пазух.

Следует отметить, что сходная с отеком картина отмечается при подкожной эмфиземе, возникающей при травме в результате попадания в рыхлую подкожную клетчатку век воздуха из придаточных пазух носа. При этом при пальпации определяется крепитация.

При некоторых состояниях может происходить изменение цвета кожи век. Так, усиление пигментации наблюдается при базедовой болезни и болезни Аддисона, во время беременности, уменьшение пигментации - при альбинизме.

Резкая болезненность при надавливании на верхний край орбиты в области надглазничной вырезки, а также под нижним краем орбиты, в области fossa canina, указывает на поражение первой или второй ветви тройничного нерва.

При осмотре краев век следует обращать внимание на переднее, слегка закругленное ребро (limbus palpebralis anterior), вдоль которого растут ресницы, на заднее острое ребро (limbus palpebralis posterior), плотно прилегающее к глазному яблоку, а также на узкую полоску между ними - межреберное пространство, где открываются выводные протоки заложенных в толще хряща мейбомиевых желез. Ресничный край может быть гиперемирован, покрыт чешуйками или корочками, после удаления которых обнаруживаются кровоточащие язвочки.

Обращают внимание на правильность роста ресниц, их количество. Уменьшение или даже облысение (madarosis), неправильный рост ресниц (trichiasis) указывают на текущий тяжелый хронический воспалительный процесс или на перенесенное заболевание век и конъюнктивы (трахома, блефарит). Полиоз (частичное или полное поседение ресниц) наблюдается при хронических блефаритах, псориазе, после ожогов и удаления ресниц.

В норме длина глазной щели составляет 30-35 мм, ширина 8-15 мм, верхнее веко прикрывает роговицу на 1-2 мм, край нижнего века не доходит до лимба на 0,5-1 мм.

Из патологических состояний следует выделить:

Лагофтальм (lagophthalmus), или «заячий глаз», несмыкание век, зияние глазной щели, наблюдающееся при параличе n. facialis, вывороте век, злокачественном экзофтальме.

Птоз (ptosis) - опущение верхнего века, отмечающееся при поражении n. oculomotorius (полный птоз) и синдроме Горнера (частичный птоз);

Широкую глазную щель, наблюдающуюся при раздражении симпатического нерва и базедовой болезни;

Сужение глазной щели - спастический блефароспазм, который возникает при инородных телах и воспалении конъюнктивы и роговицы.


  1. ^ Пальпаторная офтальмотонометрия
Пальпаторный способ дает приблизительное представление о внутриглазном давлении (ВГД). Больного просят смотреть вниз. Врач фиксирует указательные пальцы правой и левой руки над хрящом верхнего века и осторожно попеременно надавливает на глаз. Подушечки пальцев ощущают податливость глазного яблока. Чем выше давление, тем глаз менее податлив. В случае низкого давления глазное яблоко мягкое. Нормальное внутриглазное давление обозначается буквами TN. Различают 3 степени повышения внутриглазного давления при пальпаторном исследовании: Т+1 – умеренное повышение тонуса глаза, Т+2 – более значительное повышение, Т+3 – резкое повышение тонуса, и 3 степени понижения – соответственно Т-1, Т-2 и Т-3 (резкая гипотония). Этот метод необходим для ориентировки в уровне внутриглазного давления в случае, когда тонометрия не показана (язва роговой, кератит). В такой ситуации тонус одного глаза сравнивают с тонусом другого.

Высокое ВГД наблюдается при врожденной, первичной и вторичной глаукоме, эндофтальмитах, а также при офтальмогипертензии.

Гипотония глаза встречается при проникающих травмах, перфорациях роговой оболочки, отслойке сетчатой и сосудистой оболочках, субатрофии глазного яблока и хронических увеитах. Пальпаторное исследование ВГД в глазах с острым иридоциклитом вызывает резкую боль.


  1. ^ Исследование рефракции глаза субъективным и объективным методами
Все методы определения рефракции возможно подразделить на субъективные и объективные.

Субъективный состоит в подборе пациенту корригирующих стекол под контролем определения остроты зрения (максимальное зрение без коррекции стеклами называется относительным, с коррекцией - абсолютным). Относительная и абсолютная острота зрения равны у эмметропов и в случае гиперметропии слабой степени.

Вначале определяют остроту зрения, а затем раздельно к каждому глазу пациента приставляют слабые собирающие или рассеивающие линзы (+0,5 Д или –0,5 Д) У эмметропа собирающие линзы вызовут ухудшение, а рассеивающие линзы не улучшат зрения; у миопа наступит повышение остроты зрения от рассеивающих стекол, а у гиперметропа от собирающих. После этого соответствующим усилением улучшающих остроту зрения стекол определяют такое, которое предельно повышает остроту зрения и хорошо переносится больным. Это стекло определит клиническую рефракцию. Например, стекло sph +5,0D – соответствует гиперметропии в 5,0D.

Нередко больной называет последующие буквы и не может назвать буквы предыдущего ряда или меняет положение головы для улучшения зрения. В таком случае речь может идти об астигматизме. При этом с помощью только сферических линз невозможно добиться максимально хорошей абсолютной остроты зрения, и требуется коррекция с использованием цилиндрического стекла. Пример коррекции астигматизма.

К методам объективного определения рефракции относят скиаскопию, и рефрактометрию.

Скиаскопия - или теневая проба, проводится при наличии у пациента розового рефлекса с глазного дна при исследовании в проходящем свете (светопроводящие среды глаза должны быть прозрачны). Эту пробу осуществляют после выключения аккомодации путем инстилляций мидриатиков (например, атропина). Если при освещении офтальмоскопом глаза пациента появляется розовое свечение зрачка, врач производит легкие качательные движения плоским зеркалом офтальмоскопа слева направо или сверху вниз, то на область зрачка будет набегать тень. Она может двигаться либо в сторону движения офтальмоскопа, либо в противоположную. В зависимости от характера движения тени определяют вид клинической рефракции. Затем приставляют к глазу исследуемого стекла в соответствии с видом клинической рефракции и продолжают исследование, постепенно увеличивая силу стекла до тех пор, пока тень не исчезнет или не станет двигаться в противоположную сторону (что означает - врач взял стекло уже большее, чем необходимо для нейтрализации данной степени рефракции и тень стала двигаться в противоположную сторону). Обычно скиаскопия проводится с расстояния в 1,0 м., при этом врач искусственно превращает исследуемого в миопа в 1,0 D. Поэтому для определения степени аномалии клинической рефракции к тому стеклу с которым произошла нейтрализация тени необходимо прибавить -1,0 D.

Например, нейтрализация тени при скиаскопии произошла после приставления к глазу больного собирательного стекла +4,0 Д. Для определения степени гиперметропии в данном случае необходимо к величине этого стекла прибавить -1,0 D. Тогда получается: +4,0 D + (-1,0 D)= +3,0 D.

Другой метод объективного определения клинической рефракции и ее степени - рефрактометрия, в настоящее время используется все шире и заключается в том, что пациента усаживают к прибору, называемому рефрактометром и проецируют на глаз специально установленные в аппарате метки. Путем перемещения этих меток добиваются наиболее четкого их изображения и при этом по специальной шкале или автоматически (в автоматизированном рефрактометре) определяют клиническую рефракцию и ее степень. При этом возможно и объективное исследование меридианов астигматизма и его степеней.


  1. ^ Измерение угла косоглазия по Гиршбергу
Косоглазие бывает односторонним и двусторонним (альтернирующим), при котором наблюдается попеременное отклонение глаз. В зависимости от того, в какую сторону отклоняется глаз, различают внутреннее и наружное косоглазие, а также косоглазие кверху и книзу.

Величина отклонения глаза (угол косоглазия) выражается в градусах и определяется различными способами. Наиболее простым из них является способ Гиршберга. Заключается он в том, что больного просят фиксировать взором офтальмоскоп. Пучок света от него на роговой совпадает с центром зрачка некосящего глаза. Во втором глазу роговичное отражение света будет смещено. Если при средней ширине зрачка (3-3,5 мм) роговичное отражение света расположится по краю зрачка, то угол косоглазия составит 15º, между краем зрачка и лимбом – 25-30º, на лимбе - 45º, за лимбом - 60º и более.

Необходимо различать явное косоглазие от мнимого. При последнем, световой рефлекс также не будет соответствовать центру зрачка. Самый простой метод дифдиагноза – определение характера зрения на 4-х точечном приборе. При явном косоглазии бинокулярное зрение всегда отсутствует.


  1. ^ Исследование слезопродукции
Обычно проводят при жалобах больных на чувство «сухости», неприятные ощущения в глазах, а также при хронических кератитах неясной этиологии.

При осмотре слезных органов определяют величину слезных точек (в норме d = 0,35-0,5мм), их положение по отношению к слезному озеру. Надавливая на область слезного мешка, выявляют возможные отхождения через слезные точки патологического содержимого канальцев и слезного мешка. Подняв верхнее веко кверху и кнутри и предложив больному смотреть на кончик своего носа, осматривают пальпебральную часть слезной железы.

Проба Ширмера – служит критерием оценки уровня слезопродукции. За нижнее веко закладывается полоска промокательной бумаги 1х5 см. Свободный конец полоски остаётся на коже века. При нормальной слезопродукции бумага через 5 мин. намокает от края века на 15-18 мм. Намокание полоски менее чем на 15 мм говорит о снижении уровня слезопродукции.

Последнее является важным диагностическим симптомом синдрома Съегрена. Синдром характеризуется аутоиммунным воспалением и разрушением слезных и слюнных желез.


  1. ^ Исследование слезооттока. Массаж слезного мешка.
Канальцевая проба или проба Веста (West) применяется для исследования присасывающей функции слезных канальцев. Капнув за нижнее веко 1-2 капли 2% р-ра колларгола, предлагают больному делать частые, легкие мигательные движения. Если слезные точки и канальцы функционируют нормально, то колларгол через 0,5-2 мин исчезает из конъюнктивального мешка, что узнают по побелению конъюнктивы склеры. При надавливании на слезные канальцы из слезных точек выходит колларгол. В этом случае проба положительная. При отрицательной канальцевой пробе глазное яблоко надолго остается окрашенным в коричневый цвет.

Носовая проба служит для исследования проходимости слезно-носового канала. Появление колларгола в носу (легкое высмаркивание в ватку) через 5 мин после инстилляции 1-2 капель 2% р-ра колларгола в конъюнктивальный мешок говорит о нормальной проходимости канала. Отсутствие колларгола в носу через 10 минут говорит о непроходимости слезно-носового канала.

При положительной канальцевой пробе в сочетании с отрицательной носовой, как правило, имеет место хр. дакриоцистит. Иногда носовая проба может быть отрицательной в связи с блокадой выходного отверстия под нижней носовой раковиной (хронический ринит, инородное тело, новообразование), при переломе костей носа. Подобное также встречается при дакриоцистите новорожденных из-за атрезии окончания носо-слезного протока. Лечение дакриоцистита новорожденных начинают с массажа слезного мешка, заключающегося в осторожном надавливании пальцем у внутреннего угла глазной щели (сверху - вниз). Если массаж не дает эффекта, проводят зондирование носо-слезного протока через нижнюю слезную точку – каналец – слезный мешок.

^ 14. Подбор очковой коррекции при аметропиях и пресбиопии

1. Исследуемый сидит на расстоянии 5 метров от таблицы для проверки остроты зрения.

2. Пациенту надевают пробную оправу, перед левым глазом в оправу помещают непрозрачный экран.

3. Необходимо иметь набор пробных очковых линз. Использовать в работе следует только сферические линзы: собирающие (положительные (+), sph. convex) или рассеивающие (отрицательные (-), sph. concav).

Рассмотрим несколько примеров определения рефракции.

1. У пациента Visus OD = 1,0. При такой остроте зрения у него может быть эмметропия или гиперметропия слабой степени, но не миопия. Гиперметропия слабой степени самокорригируется напряжением аккомодации.

Для определения рефракции в пробную оправу помещают сферическое стекло +0,5 D. У пациента могут быть 2 варианта ответа.

1-й вариант. Исследуемый видит хуже: Visus OD = 1,0 sph. convex +0,5 D = 0,9.

Следовательно, имеется эмметропия.

Запись результатов определения рефракции: Visus OD=1,0; Rf Em.

2-й вариант. Пациент видит так же: Visus OD = 1,0 sph. convex +0,5 D = 1,0. Тогда заменяют линзу на более сильную (+0,75 D): Visus OD = 1,0 sph. convex +0,75 D = 1,0. Снова заменяют линзу на более сильную (+1,0 D): Visus OD=1,0 sph. convex +1,0 D = 0,8.

Следовательно, у пациента гиперметропия 0,75 D.

Запись данных исследования: Visus OD = 1,0; Rf Hm 0,75 D.

2. У пациента пониженное зрение. Visus OS = 0,2. Такая острота зрения (при отсутствии патологии) свидетельствует о гиперметропии или миопии.

В пробную оправу перед проверяемым глазом помещают сферическое стекло +0,5 D и просят пациента прочитать 3-ю строку. Пациент может иметь 2 варианта ответа.

1-й вариант. Пациент видит лучше, то есть читает 3-ю строку. Следовательно, имеется гиперметропия.

Для определения степени гиперметропии в пробной оправе следует менять стекла, усиливая их с интервалом 0,5 или 1,0 D. Получив высокую остроту зрения (1,0), исследование продолжают - в оправу вставляют все более сильные положительные линзы, чтобы устранить самокоррекцию за счет напряжения аккомодации. Когда острота зрения у пациента начинает снижаться, исследование прекращают. Степень гиперметропии определяется самым сильным положительным стеклом, которое дает наиболее высокую остроту зрения. Пример записи хода исследования:

Cтекло Острота зрения

Результат определения рефракции. Visus OS = 0,2 sph. сonvex +2,0 D = 1,0; Rf Hm 2.0 D.

2-й вариант. Пациент видит хуже со стеклом + 0,5 D. Тогда в пробную оправу вставляют сферическое отрицательное стекло -0,5 D. Улучшение остроты зрения у пациента свидетельствует о миопии. Для определения степени миопии в пробную оправу вставляют стекла, постепенно увеличивая их силу, с интервалом 0,5 или 1,0 D. Степень миопии определяется самым слабым минусовым стеклом, дающим наилучшее зрение.

Пример записи хода исследования

Cтекло Острота зрения

Результат определения рефракции: Visus OS = 0,2 sphю concav - 1,5 D = 1,0; Rf M 1,5 D.

Необходимо отметить, что если при определении рефракции острота зрения под влиянием сферических линз у пациента улучшается незначительно или вообще не улучшается, то следует думать о наличии астигматизма, амблиопии или органических изменений, вызывающих понижение остроты зрения.

У лиц молодого возраста субъективное и объективное определение рефракции проводят в условиях мидриаза. Окончательно вопрос о рациональной оптической коррекции решают после прекращения действия мидриатиков на основании результатов предыдущего исследования, а также после пробного ношения очков в течение 15-20 минут (чтение, ходьба).

При этом следует учитывать хорошую бинокулярную переносимость очков как для дали, так и для работы на близком расстоянии.

Все видимые объекты находятся в поле зрения человека. Исследование полей зрения входит в комплекс диагностики заболеваний зрительного нерва, сетчатки, глаукомы и других опасных патологий, которые могут закончиться полной потерей зрения. Периметрия также помогает контролировать развитие патологий и проверять эффективность терапии.

Что нужно знать о периметрии

Полем зрения называют пространство, которое распознает человек при фиксации взгляда и неподвижности головы. Если смотреть на определенный объект, помимо его четкого изображения, человек видит другие предметы, расположенные вокруг. Это называется периферическим зрением, и оно не такое четкое, как центральное.

Периметрия – офтальмологическое исследование, которое позволяет исследовать границы полей зрения через проекцию на сферическую поверхность. Различают кинетическую и статическую периметрию. Кинетическое исследование подразумевает использование движущегося объекта, а статическое – варьирование освещения объекта в одной позиции.

Исследование помогает проанализировать изменения поля зрения и определить локализацию патологического процесса (сетчатка, зрительный нерв, зрительные пути, зрительные центры в головном мозге). Чаще всего выявляют сужение полей зрения и выпадение некоторых участков (скотома).

Показания к периметрии:

  • патологии сетчатки (разрывы и отслойки, дистрофия, кровоизлияния, ожоги, опухоли);
  • диагностика патологий макулы, в том числе токсического поражения;
  • выявление пигментного ретинита;
  • болезни зрительного нерва (неврит, травмы);
  • диагностика патологий зрительного пути и корковых центров при наличии новообразований, травм, инсульта, тяжелого нарушения питания;
  • опухоль головного мозга;
  • гипертоническая болезнь;
  • черепно-мозговые травмы;
  • признаки нарушения мозгового кровообращения;
  • подтверждение глаукомы, отслеживание динамики процесса;
  • проверка жалоб пациента (факторы аггравации);
  • профилактическое обследование.

Периметрия противопоказана, если обследуемый находится в состоянии алкогольного или наркотического опьянения, либо имеет психические заболевания. Процедура не вызывает никаких осложнений.

Что может исказить результаты периметрии:

  • нависшие брови;
  • глубокая посадка глазных яблок;
  • опущение века;
  • высота переносицы;
  • воздействие раздражителя на крупные сосуды вблизи диска зрительного нерва;
  • низкая острота зрения;
  • некачественная коррекция;
  • оправа очков.

Ложные дефекты поля зрения могут появляться также из-за особенностей строения лица и ширины зрачка. Чтобы исключить ложные дефекты, проводят повторное тестирование в той же программе. Чтобы наблюдение в динамике было достоверным, нужно соблюдать одинаковые условия проведения периметрии (размер объектов, освещение, время и цвета).

Как проводят периметрию

Для выполнения периметрии нужен периметр. Прибор бывает настольным, проекционным и компьютерным. Исследование проводят для каждого глаза отдельно, прикрывая второй повязкой. Пациент садится перед аппаратом и размещает подбородок на подставке, чтобы обследуемый глаз находился напротив фиксируемой точки, которая располагается в центре периметра. Врач встает сбоку и перемещает объект к центру по меридианам.

Пациент отмечает моменты, когда при взгляде на точку начинает видеть движущийся объект. Врач отмечает на схеме градусы точки, где объект был замечен. Объект продолжают двигать до фиксационной метки, чтобы проверить сохранность зрения на всем протяжении меридиана. Обычно исследуют 8 меридианов, но точные результаты дает анализ 12 меридианов.

Типы периметрии

Кинетическая периметрия использует движущиеся световые объекты-стимулы, которым задают определенную яркость. Их также называют стимулами заданной яркости. Врач перемещает объект по исследуемым меридианам. Точки, в которых объект становится видимым и невидимым, соединяют и получают границы между зонами, в которых пациент видит и не видит объект с заданными параметрами. Эти границы называют изоптерами, они ограничивают поле зрения. Результаты кинетической периметрии зависят от размера, яркости и цвета объекта-стимула.

Статическая периметрия гораздо сложнее, но дает больше информации о поле зрения. Тест позволяет определить вертикальную границу зрительного холма (светочувствительный участок поля). Пациенту показывают неподвижный объект, и врач меняет его интенсивность. Так устанавливается порог чувствительности. Статическую периметрию разделяют на пороговую и надпороговую.

При пороговой периметрии интенсивность объекта меняют постепенно, но всегда на одинаковую цифру до порога значения. Этот метод дает больше информации о зрительном холме, а надпороговая периметрия подходит для скрининга. Она предполагает использование объектов с характеристиками, которые близки к норме порогового значения в разных точках зрительного поля. Отклонение от этих значений может указывать на наличие патологии.

Компьютерная периметрия

При проведении исследования пациент фиксирует взгляд на одной точке. В хаотичном порядке начинаются возникать объекты с разной яркостью, при этом их скорость постоянно меняется. Замечая объект, пациент должен нажать на кнопку прибора. Компьютерная периметрия может занимать 5-20 минут (в зависимости от аппарата).

Разновидности периметрии

Периметрию проводят по нескольким разным методикам. Самым простым считается тест Дондерса, который позволяет оценить границы поля зрения. Пациента располагают в метре от врача и просят сфокусировать взгляд на носу обследующего. Пациент закрывает сначала один глаз, а доктор показывает различимый объект и проводит его в одном из меридианов. Здоровый человек замечает объект одновременно обоими глазами. Действие повторяют в 4-8 меридианах, чтобы ориентировочно определить границы поля зрения. Обязательным условием теста Дондерса является сохранность границ.

Для изучения центрального поля используют тест Амслера – еще более простой метод обследования. Тест дает возможность оценить зону до 10° от центра поля зрения. При диагностике используют решетку из горизонтальных и вертикальных линий, где в центре имеется точка. Пациент должен зафиксировать взгляд на точке с расстояния в 40 см. Признаки патологии по тесту Амслера: искривление линий и возникновение пятен. Метод незаменим при первичной диагностике патологий макулы.

Исследовать центральное поле зрения можно при помощи метода кампиметрии. Пациент должен закрыть один глаз и зафиксировать взгляд на черной доске, расположенной в метре. Доска (1×1 м) имеет в центре белую точку. По исследуемым меридианам водят белые объекты разного диаметра (1-10 мм) пока те не исчезают. отмечают сначала на доске, а результаты переносят на бланк.

В теории результаты разных методов должны совпадать, но на практике движущиеся объекты просматриваются лучше, чем стационарные. Особенно это заметно в зонах с дефектами, что называется феноменом Риддоха.

Использование цветов

В зависимости от качества зрения используют разные по диаметру объекты. При нормальном зрении применяют объекты в 3 мм, а при низком – от 5 до 10 мм. На периферии сетчатки светоощущение отсутствует, край воспринимает только белый. По мере приближения к центру появляется синий, красный, желтый и зеленый. В центре различимы все цвета.

Границы полей зрения при использовании белого объекта:

  • кнаружи – 900;
  • вверх – 50-550;
  • вверх и наружу – 700;
  • вверх и внутрь – 600;
  • внутрь – 550;
  • вниз и внутрь – 500;
  • вниз – 65-700;
  • вниз и наружу – 900.

Возможны колебания от 5 до 100 единиц. Исследование на другие цвета осуществляется аналогично, но с цветными объектами. Пациент отмечает не момент появления объекта, а момент распознавания цвета. Нередко изменения на белый цвет не обнаруживаются, но выявляют сужение на другие цвета.

Нормальные показатели периметрии

Поле зрения можно представить в виде трехмерного зрительного холма. Его основание – границы поля, а высота холма определяет степень светочувствительности отдельных участков сетчатки. В норме высота уменьшается от центра к периферии. Чтобы упрощать анализ, результаты периметрии отображают в виде карты на плоскости. Участки глазного дна на такой карте представлены так, что нарушения в нижних отделах сетчатки отражаются изменениями в верхних.

Центр поля зрения (точка фиксации) – фоторецепторы центральной ямки. Поскольку диск зрительного нерва не содержит светочувствительные клетки, на карте он представлен «слепым» пятном. Его еще называют физиологической скотомой или пятном Мариотта. Слепое пятно располагается в наружной части поля в горизонтальном меридиане (10-20° от центра поля). В норме также могут быть выявлены ангиоскотомы, то есть проекции сосудов сетчатки, которые связаны с пятном Мариотта и по форме напоминают ветви дерева.

Нормы периферических границ:

  • верхняя – 50°;
  • нижняя – 60°;
  • внутренняя – 60°;
  • наружная – меньше 90°.

Какие результаты периметрии указывают на патологии

Основные показатели нарушений при периметрии – сужение полей зрения и скотомы. В зависимости от степени поражения зрительного пути характеристики сужения поля будут отличаться. Изменения могут быть односторонними или двухсторонними, а также концентрическими и секторальными. Концентрические изменения наблюдаются по всем меридианам, а секторальные – на конкретном участке при нормальных границах на всем остальном протяжении.

Дефекты, которые расположены в каждом глазу в одной половине поля, называются гемианопсией. Данное состояние разделяется на гомонимное и гетеронимное. Гомонимная гемианопсия – выпадение с височной стороны в одном глазу и с носовой в другом. Гетеронимная гемианопсия – симметричное выпадение носовых или теменных половин поля в обоих глазах.

Типы гемианопсии по размерам выпадения:

  • полная (выпадение всей половины);
  • частичная (сужение некоторых зон);
  • квадратная (изменения в верхних или нижних квадрантах).

Скотомой называют область выпадения в поле зрения, которая окружена сохранной зоной, то есть не совпадает с периферическими границами. Такие выпадения могут принимать любую форму и располагаться в любой области (центр, пара- и перицентральная зоны, периферия).

Различимые пациентом скотомы называют положительными. Если выпадение обнаруживается только во время обследования, оно считается отрицательным. Пациенты, страдающие от мигрени, отмечают возникновение мерцающей скотомы. Она появляется внезапно, имеет кратковременный характер и перемещается в поле зрения.

Виды патологических скотом:

  • относительная (снижение чувствительности, при котором определяются только большие и яркие объекты);
  • абсолютная (полное выпадение зоны поля).

Парацентральные скотомы Бьеррума могут указывать на развитие глаукомы (повышенное внутриглазное давление). Такая скотома дугообразно окружает центр поля, а потом увеличивается и сливается с ним. Скотома появляется при повышении внутриглазного давления, а при снижении может полностью исчезать. На поздней стадии глаукомы выявляют две скотомы Бьеррума, соединенные между собой.

Доступность и стоимость периметрии

В разных медицинских учреждениях расценки на периметрию могут сильно отличаться. В поликлиниках, где используют старое оборудование, средняя цена на исследование полей зрения составляет 300 рублей. Обследование на современном компьютерном периметре может обойтись пациенту в 1500 рублей.

Периметрия остается эффективным методом диагностики многих офтальмологических нарушений, поэтому она доступна в большинстве государственных и частных медицинских учреждений. Процедура безболезненна и безопасна, поэтому нельзя отказываться от обследования, если имеются подозрения на глаукому, патологии сетчатки или нарушения в работе головного мозга.

ПЕРИМЕТРИЯ (греч. peri вокруг, около + metreo мерить, измерять) - метод исследования поля зрения (пространства, одновременно воспринимаемого глазом при неподвижном взоре и фиксированном положении головы) с помощью специальных приборов - периметров. Сущность метода заключается в том, что поле зрения (см.) исследуемого глаза определяется в проекции на вогнутую сферическую поверхность (дугу или полусферу), концентричную поверхности сетчатки, путем предъявления пациенту тест-объекта заданного размера, яркости и цвета в различных точках дуги (полусферы) и определения его положения относительно зрительной оси глаза. При П. устраняется грубое искажение границ поля зрения, неизбежное при проекции его на плоскость (см. Кампиметрия).

П. известна со времен Гиппократа (4 в. до н. э.). Основателем клинической П. считают Я. Пуркинье (1825). Он впервые применил дугу для исследования поля зрения и показал клин, ценность П. при глазных и неврол. заболеваниях. Ауберт и Фер-стер (H. Aubert, R. Forster, 1857) усовершенствовали методику Пуркинье и разработали основные принципы клинической П. Особенное развитие П. и аппаратура для ее проведения получили с начала 19 в. Современные методы П. имеют большое значение для диагностики и прогнозирования ряда заболеваний зрительного анализатора и головного мозга.

П. применяют при заболеваниях, сопровождающихся изменением границ поля зрения или очаговыми выпадениями внутри этих границ - скотомами (см. Скотома). К таким заболеваниям относятся глаукома, пигментная дистрофия сетчатки, неврит и атрофия зрительного нерва, тромбоз центральной вены сетчатки, а также различные поражения головного мозга: опухоль, арахноидит, нарушение кровообращения.

Существует два основных способа П.: кинетическая П. с применением подвижного тест-объекта и статическая П., при которой тест-объект неподвижен.

Кинетическая периметрия

Различают следующие виды кинетической периметрии: П. с использованием белого тест-объекта, цветовая, топографическая, объективная, офтальмоскопическая П.

Периметрия с использованием белого тест-объекта наиболее распространена в клин, практике в СССР и за рубежом. Исследование проводят поочередно для каждого глаза (второй глаз закрывают легкой повязкой). Исследуемый должен удобно расположиться у периметра, установив подбородок на специальной подставке прибора так, чтобы исследуемый глаз находился против фиксационной точки, расположенной в середине дуги периметра. Глядя на фиксационную точку, исследуемый должен отметить момент, когда он заметит появление в поле зрения движущегося тест-объекта. Это положение тест-объекта на дуге соответствует точке сетчатки, где чувствительность ее является пороговой по отношению к тест-объекту, оно отмечается на схеме поля зрения. Движение тест-объекта необходимо продолжать до точки фиксации, чтобы убедиться в сохранности поля зрения на протяжении всего меридиана. Поворачивая дугу периметра, проводят исследование по меридианам через 15°, 30° или 45°. При исследовании лиц с достаточно высокой остротой зрения применяют тест-объект диам. 3 мм. Для выявления мелких дефектов и незначительных сужений поля зрения П. проводят с помощью тест-объекта диам. 1 мм.

Цветовая периметрия проводится аналогично П. с помощью белого тест-объекта, но в отличие от нее применяют тест-объекты синего, красного и зеленого цветов диам. 5 или 10 мм; при этом отмечается момент правильного различия исследуемым цвета предъявляемого объекта. Для исключения врожденной аномалии цветоощущения перед проведением цветовой П. необходимо исследовать пациентов с помощью полихроматических таблиц Е. Б. Рабкина (см. Цветовое зрение).

Топографическая периметрия (изоптопериметрия) проводится с помощью нескольких тест-объектов различной величины и яркости. В результате исследования получают соответственно несколько изоптер - линий, соединяющих на схеме поля зрения точки, к-рые соответствуют точкам сетчатки с одинаковой световой чувствительностью. Этот вид П. позволяет детально исследовать поле зрения и применяется для точной диагностики заболеваний зрительного анализатора. Для исследования пространственной суммации в поле зрения используют два разновеликих объекта, к-рые так подравниваются светофильтрами, что количество отраженного ими света становится одинаковым. В норме изоптеры, полученные при исследовании с помощью этих двух объектов, совпадают, при патологии - расходятся.

Объективная периметрия основана на определении границ поля зрения с помощью пупиллографии (см. Пупиллография), регистрирующей зрачковые реакции исследуемого, или энцефалографии (см.) путем оценки альфа-ритмов ЭЭГ.

Офтальмоскопическая периметрия проводится с помощью офтальмоскопа (см. Офтальмоскопия), регистрирует грубую проекцию света на сетчатку исследуемого и применяется с целью определения степени сохранности поля зрения и целесообразности оперативного лечения при помутнении оптических сред глаза (напр., бельмо, катаракта и др.).

Статическая (квантитативная, количественная) периметрия

Статическая (квантитативная, количественная) периметрия проводится с использованием неподвижного тест-объекта, который предъявляется исследуемому в заранее заданных точках дуги или полусферы периметра. Яркость тест-объекта постепенно увеличивается от субпороговой до пороговой, при которой он становится различим пациентом. Метод высоко информативен.

Условия для проведения периметрии. Кинетическая и статическая П. проводятся в условиях адаптации к различным уровням освещенности дуги (адаптопериметрия): к фотопическому («дневному»), скотопическому («ночному») и мезопическому (промежуточному) уровням. Уровень освещенности влияет на световую чувствительность фоторецепторов сетчатки (колбочек и палочек). Так, при фотопической освещенности наиболее чувствительны к свету колбочки, расположенные гл. обр. в центральной зоне сетчатки. П. при этом уровне освещенности позволяет выявить дефекты в центральных отделах поля зрения. При скотопи-ческой освещенности наиболее выгодно исследовать периферические отделы сетчатки, где в этих условиях наиболее высока чувствительность палочек. Практически П. предпочтительнее проводить при мезопической освещенности, т. е. в условиях одновременного функционирования палочек и колбочек. Цветовую П. необходимо проводить при фотопической освещенности, т. к. в этих условиях наиболее активен колбочковый аппарат, обеспечивающий цветовое зрение.

При проведении П. большое значение имеет психол, подготовка исследуемого. Перед П. пациенту необходимо объяснить задачи и условия исследования. Побочные раздражители (свет, шум) должны быть устранены. Для сравнения данных П., полученных разными исследователями или в динамике заболевания, важно, чтобы П. проводилась в строго идентичных условиях. На регистрационном периметрическом бланке (рис. 1) должны отмечаться фамилия, имя, отчество пациента, дата исследования, размер, яркость и цвет тест-объекта, освещенность дуги (полусферы) периметра, ширина зрачка исследуемого.

Периметры

Периметры - приборы для исследования поля зрения, основной частью которых является дуга, вращающаяся вокруг горизонтальной оси, или полусфера. Дуга окрашена в серый матовый цвет, имеет радиус 333 мм (в периметре-локализаторе - 150 мм), на наружной поверхности ее нанесены деления от 0° до 90° в обе стороны от середины. В середине дуги имеется фиксационная точка. Исследование проводят с помощью тест-объектов: отражающих и самосветящихся. Отражающие тест-объекты представляют собой световое пятно, получаемое с помощью специального проектора, или кружки из бумаги, эмали (белые и цветные) диам. 1, 3, 5, 10 мм, укрепленные на тонких стержнях-держателях, к-рые перемещают вручную вдоль дуги. Самосветящиеся тест-объекты выполнены в виде источников света, закрытых цветными или нейтральными светофильтрами или диафрагмами.

Один из первых периметров был разработан Ферстером (R. Forster). В СССР применяются следующие модели периметров: периметр-лока-лизатор JIB (по Водовозову), настольный периметр (ПНР-2-01), проекционный периметр (ПРП-60), а также сферические периметры, выпускаемые за рубежом.

Периметр-локализатор ЛВ - портативный ручной прибор, имеющий дугу и набор пигментных тест-объектов. С помощью этого периметра исследуют поле зрения у больных, находящихся на постельном режиме, определяют локализацию внутриглазных инородных тел или изменений на глазном дне (напр., разрывов сетчатки).

Настольный периметр состоит из основания, дуги с регистрирующим устройством, опоры для подбородка. Границы поля зрения исследуют с помощью тест-объектов и отмечают их на схеме поля зрения, закрепленной в регистрирующем устройстве (рис. 2).

Достоинством описанных периметров является простота в обращении; недостатком - непостоянство освещения дуги и тест-объектов, невозможность контроля за фиксацией исследуемого глаза. Исследования с помощью этих периметров носят ориентировочный характер.

Значительно больший объем информации о поле зрения получают с помощью проекционных периметров, в которых световой тест-объект проецируется на внутреннюю поверхность дуги или полусферы. Набор диафрагм и светофильтров, вмонтированных на пути светового потока, позволяет дозированно изменять величину, яркость и цвет объектов, что дает возможность проводить не только качественную, но и количественную (квантитативную) П.

Проекционный периметр был впервые предложен в 1924 г. Маджоре (Maggiore). В СССР применяется проекционный периметр - ПРП-60 (рис. 3). В середине дуги расположена самосветящаяся фиксационная точка красного цвета диаметром 1 мм. Тест-объекты в виде светового пятна проецируются на дугу с помощью проектора. Перемещение тест-объектов по дуге периметра осуществляется поворотом зеркала, укрепленного в подвижной головке проектора, приводимой во вращение специальным барабаном посредством гибкого троса. Границы поля зрения наносятся на схему, укрепленную в регистрирующем устройстве. Этот периметр удобен, но неоднородность освещения видимого фона не гарантирует достаточной точности исследования.

Указанный недостаток устранен в конструкции сферических периметров. Один из видов сферических периметров - периметр Гольдманна (рис. 4) представляет собой вогнутую полусферу радиусом 333 мм, в центре которой расположена подставка, позволяющая установить голову исследуемого так, чтобы глаз его находился в центре полусферы. Внутренняя поверхность полусферы окрашена белой матовой краской и равномерно освещается лампой. Тест-объекты в виде светового пятна получают с помощью проектора и набора сменных светофильтров и диафрагм. Перемещение тест-объектов осуществляется поворотом зеркала проекционной системы и всего проектора вокруг вертикальных осей. Наблюдение за положением исследуемого глаза производится через отверстие фиксационной точки, расположенной в вершине полусферы, с помощью специальной оптической трубки.

За рубежом применяют анализатор поля зрения Фридмана, позволяющий выявлять наиболее типичные дефекты в центральной части поля зрения. Исследование проводят путем предъявления исследуемому на короткое время (сотые доли сек.) световых тест-объектов определенной яркости в различных участках поля зрения. Количество и местоположение увиденных тест-объектов позволяет судить о поле зрения пациента.

В наиболее совершенных моделях современных периметров используются достижения автоматики и электроники: ЭВМ, программные и телевизионные устройства, что позволяет задавать различные программы исследования и автоматически регистрировать результаты.

Библиография: Маринчев В. Н. и Тарутта Е. П. Влияние ширины зрачка, рефракции и аккомодации на результаты периметрии, в кн.: Актуальн. вопр, диагн., клин, и леч. глауком, под ред. A. М. Сазонова и др., с. 43, М., 1979; Миткох Д. И. и Носкова А. Д. Методы и приборы исследования поля зрения, М., 1975; Многотомное руководство по глазным болезням, под ред. В. Н. Архангельского, т. 1, кн. 2, с. 118 и др., М., 1962; Новохатский А. С. Клиническая периметрия, М., 1973; Der Augenarzt, hrsg. v. K. Velhagen, Bd 2, S. 361 u. a., Lpz., 1972; Harrington D. O. The visual fields, St Louis, 1976; Miles P. W. Testing visual fields by flicker fusion, Arch. Neurol. Psychiat., v. 65, p. 39, 1951; Purkinje J. E. Beobachtungen und Versuche zur Physiologie der Sinne, B., 1825; Tr a qu air H. M. Clinical perimetry, St Louis, 1949.

B. H. Маринчев; А. Д. Носкова (техн.).

3769 16.05.2019 4 мин.

Прежде, чем определить наличие глазного заболевания и степень его развития, врач офтальмолог проводит диагностику глаза на самом современном оборудовании. Одним из методов диагностики является компьютерная периметрия глаза.

Определение метода

Компьютерная периметрия – это один из самых современных методов, позволяющий выявить многие из глазных заболеваний . Он позволяет обнаружить серьёзные патологии, к которым относятся:

  • Опухоли глазного яблока;

Компьютерная периметрия оценивает состояние полей зрения. , достаточно относительная величина. Когда человек фокусирует свой взгляд в определённой точке, он всё равно будет видеть окружающие предметы. Картинка будет нечёткой и расплывчатой, но она всё равно воспринимается головным мозгом. Причём фиксируются как статические, так и динамические объекты. Правильно воспринимается цветопередача.

Компьютерная периметрия глаза совершенно безболезненна и не даёт никаких осложнений.

Поскольку при компьютерной периметрии глаза не применяются никакие лекарственные препараты, и полностью отсутствует какое-либо хирургическое вмешательство, противопоказаний для этой процедуры существует мало. Компьютерная периметрия не назначается:

  • Лицам в состоянии алкогольного или наркотического опьянения;
  • Пациентам с психическими отклонениями;
  • Лицам дегенеративного типа.

Область применения

Компьютерная периметрия, прежде всего, предназначена для выявления глазных заболеваний, но поскольку сигналы по зрительному нерву передаются непосредственно в мозг, этот метод позволяет диагностировать некоторые другие патологии:

  • Нарушения головного мозга, связанные с инсультом;
  • Черепно-мозговые повреждения;
  • Новообразования в мозге.

Если пациент симулирует проблемы со зрением и утверждает, что он плохо видит, например, с целью избежать призыва в армию, то компьютерная периметрия сразу докажет несостоятельность такого заявления. Некоторые больные склонны преувеличивать свои симптомы, но обмануть компьютерную диагностику практически невозможно.

Таблицы, определяющие остроту зрения

Кроме современных диагностических процедур на вооружении офтальмологов находятся и успешно применяются таблицы, определяющие остроту зрения. Существует несколько видов таблиц, названных в честь их создателей. Чаще всего офтальмологи используют таблицу разработанную доктором Сивцевым. Она представляет собой знаки русского алфавита, находящиеся в 12 строках и уменьшающиеся от верхней строки к нижней. Буквы 10 строки, правильно прочитанные с дистанции 5 метров, означают, что у человека отличное зрение. Это обозначается как 1,0.

Вместе этой таблицей применяется таблица Головина. Она состоит из 12 строк, но вместо букв строчки образуют кольца с разрезами, расположенными с разных сторон. Человек с хорошим зрением должен правильно определить угол разреза с верхней строки до строки под номером 10 с дистанции 5 метров. Если пациент различает зону разреза только на самой верхней строке, то его зрение оценивается как 0,1. Если различаются первый и второй ряды, то зрение будет 0,2. И так последовательно сверху вниз.

Для проверки остроты зрения у детей, которые не знают букв, используется таблица Орловой. На таблице изображены рисунки животных, птиц, деревьев и других, знакомых ребёнку, предметов. Эти пиктограммы уменьшаются сверху вниз.

Если у ребёнка нормальное зрение, он отчётливо увидит и определит рисунки на 10 строке сверху с расстояния 5 метров. Если ребёнок не видит картинки даже в самой верхней строке с расстояния 5 метров, его подводят ближе на 0,5 метра и так до тех пор, пока ребёнок не назовёт видимые изображения.

Проведение компьютерной периметрии

Для проведения диагностики применяется прибор, имеющий вид полусферы. Внутри имеется подставка для подбородка и упор для лба пациента. Пациент удобно садится на стул перед прибором и опирается подбородком на подставку. Компьютерная периметрия выполняется отдельно для каждого глаза, поэтому один глаз, на время проведения процедуры закрывается повязкой. В процессе исследования пациент смотрит в центр затемнённой камеры, где проектируется светящаяся точка-маркер.

Далее компьютер, в произвольном порядке, выводит на внутреннюю поверхность сферы светящиеся точки. У пациента в руках находится кнопка, нажатием которой он отмечает появление огонька. Программа меняет скорость появления точек, их размер и яркость. Точки появляются в произвольном порядке и с разных сторон. После завершения теста, процедура повторяется для другого глаза.

Для того чтобы диагностический тест прошёл корректно, пациенту не следует смещать глаза от точки-маркера.

Получение и оценка результатов

У офтальмологов на глазное яблоко наносится условная сетка меридианов, они соединяют переднюю и заднюю центральные точки глаза. Компьютерная программа, после того как пациент нажал кнопку, фиксирует координаты точки. Бывает, что испытуемый просто не успел нажать на кнопку, хотя видел появление огонька. Для устранения некоторых ошибок, включается программа вторичного контроля. Вся процедура занимает не более 20-30 минут. Затем компьютер обрабатывает полученные данные и распечатывает результат. После этого врач офтальмолог получает карту, на которой указаны границы полей зрения в градусах.

Поле зрения не является сплошной зоной. Даже у здорового человека в поле зрения, выпадают некоторые участки, где точки не фиксируются. Такие участки окружены нормальным полем зрения.

В частности, у каждого человека имеется слепое пятно. Это зона зрительного нерва, где отсутствуют рецепторы. На карте так же отображается сосудистая система сетчатки. По сужению полей зрения и ряду других факторов, специалисту несложно поставить правильный диагноз и назначить лечение.

Видео

Выводы

Компьютерная периметрия глаза является хорошей возможностью выявить большинство глазных патологий на ранней стадии и принять соответствующие меры. Стоимость процедуры невелика, поэтому она доступна всем слоям населения. Каждому человеку, особенно старше 40 лет, следует посещать офтальмолога не реже одного раза в год, чтобы предупредить возникновение возможного глазного заболевания.

Периметрия – это методика исследования полей зрения с проекцией их на сферическую поверхность. Полями зрения являются те части пространства, которые видит глаз при фиксированном взгляде и неподвижной голове. Когда взгляд зафиксирован на определенном предмете, помимо четкой визуализации данного предмета видны также другие предметы, которые находятся на различном расстоянии и попадают в поле зрения. Это обуславливает возможность , которое менее четкое, чем центральное.

Периметрия бывает статическая и кинетическая. При проведении кинетической периметрии применяется движущий объект, отмечается момент его появления в поле зрения и исчезновения. В случае статической периметрии изменяется освещенность объекта, находящегося в одной и той же позиции.

Периметрия позволяет оценить характер изменений полей зрения, что свидетельствует о локализации патологического процесса. Характер изменений полей зрения различный при патологии зрительного нерва, зрительный центров головного мозга или зрительных путей. Возможно определение сужения границ полей зрения, а также выпадение их ограниченных участков, которые называются .

Статическая периметрия осуществляется при помощи автоматизированных современных периметров. Она дает возможность оценить светочувствительность сетчатки. Объект в ходе такого исследования не движется, а появляется в разных участках поля зрения, а его яркость и размер изменяются.

Показания к периметрии

  • Патология зрительного нерва (ишемия, неврит, травма).
  • Патология сетчатки (кровоизлияния, дистрофия, лучевой ожог, опухоль).
  • Опухоли головного мозга.
  • Гипертоническая болезнь.
  • Черепно-мозговая травма.
  • Нарушение мозгового кровообращения.
  • Профилактическое обследование.

Противопоказано проведение периметрии при психических заболеваниях, алкогольном или наркотическом опьянении.

Как проводится периметрия

Для выполнения кинетической периметрии необходим специальный прибор – периметр. Периметр может быть дуговым (настольным), проекционным или компьютерным. Данный метод исследования проводится для каждого глаза в отдельности, при этом на второй глаз фиксируют повязку. В ходе исследования пациент садится перед периметром, размещает подбородок на специальной подставке, при этом исследуемый глаз находится точно напротив точки, которую следует фиксировать взглядом.

При выполнении периметрии пациент не отрываясь смотрит на указанную точку. Врач находится сбоку, перемещает предмет по меридианам от периферии к центру. При этом пациенту нужно уловить момент, когда при фиксированном на точке в центре взгляде он видит движущийся предмет. Офтальмолог отмечает показатели на специальной схеме. Движение предмета следует продолжать до самой фиксационной точки, для того чтобы точно убедиться в том, что зрение сохранено на протяжении всего меридиана. Размер используемого объекта зависит от остроты зрения. При высокой остроте зрения применяют объект, диаметр которого 3 мм, при низкой – от 5 до 10 мм. Обычно исследование проводят по восьми меридианам, иногда для более точной картины – по 12 меридианам.

На периферических отделах сетчатки отсутствует цветоощущение. Крайняя периферия воспринимает лишь белый цвет, по мере приближения к центральным зонам появляется ощущение желтого, синего, зеленого и красного цветов. И лишь центральная зона воспринимает все цвета.

Видео о методике проведения периметрии

Поле зрения каждого глаза на объект белого цвета в норме имеет следующие границы:

  • кнаружи (к виску) – 900,
  • кнаружи кверху– 700,
  • кверху – 50-550,
  • кнутри кверху– 600,
  • кнутри (к носу) – 550,
  • кнутри книзу– 500,
  • книзу – 65-700,
  • кнаружи книзу– 900.

Допустимы отклонения от 5 до 100. Поля зрения на другие цвета исследуются точно так же, как на белый объект. Но при этом пациенту нужно зафиксировать не тот момент, когда он видит движение, а тот, когда различим цвет объекта. Довольно часто при сохраненных границах полей зрения на белый объект выявляются сужения на другие цвета.

Результаты периметрии офтальмолог заносит в специальный бланк, где обозначены нормальные поля зрения. При выявлении выпавших участков они заштриховываются.

Пример результатов статической периметрии выглядит так.

Компьютерная периметрия

При проведении компьютерной периметрии взгляд также фиксируется на заданной метке. В приборе в хаотичном порядке в различных точках с изменяющейся скоростью появляются объекты, имеющие разную яркость. Когда пациент замечает объект, он нажимает на кнопку. На основании результатов, которые показывает прибор, врач определяет диагноз.

Длительность периметрии зависит от аппарата: при использовании компьютерного периметра – 5 минут, проекционного или дугового – около 20 минут. Имитировать искажения полей зрения могут такие состояния, как глубоко посаженные глаза, нависшие брови, высокая переносица, опущение верхнего , попадание раздражителя в зону крупного сосуда около диска зрительного нерва, слишком низкая острота зрения, некачественная коррекция зрения, помехи от оправ очков.