Раздражения

Что такое кровь и ее состав ветеринария. Количество крови у разных животных

Вопрос №1 Физиологическая роль крови.

Радел №4 Биологические свойства крови.

Лекция №8

Тема: «Физиология крови»

Разделы:

Раздел №2 Физиология эритроцитов.

Раздел №3 Физиология лейкоцитов.

Раздел №1 Физико-химические свойства крови.

1. Физиологическая роль крови.

2. Состав количество крови у разных видов животных.

3. Физико-химические свойства крови.

4. Плазма ее состав и значение.

Кровь – опорно-трофическая ткань организма. Кровь в своем развитии проходит три этапа:

1. Органы кровообразования - красный костный мозг, лимфатические узлы, клетки ретикуло-эндотелиальной системы.

2. Кровь циркулирующая по сосудам.

3. Кроворазрушающие органы (печень, селезенка).

Функции крови:

1. У крови имеется одна основная функция - транспортная, однако в зависимости от того что кровь транспортирует можно выделить следующие функции.

2. Дыхательная - кровь доставляет к клеткам и тканям кислород а к легким углекислый газ.

3. Трофическая - кровь доставляет к клеткам и тканям питательные вещества, витамины, микроэлементы.

4. Выделительная - кровь переносит продукты обмена от клеток и тканей к органам выделения. Например мочевина, мочевая кислота, креатинин образуются при распаде белков в клетках выводятся почками.

5. Защитная – в крови содержатся особые клетки способные к фагоцитозу, кроме того они формируют иммунитет.

6. Регулирующая – кровь переносит гормоны, продукты обмена, газы и другие вещества способные регулировать физиологические функции.

7. Поддержание водно-солевого баланса в организме.

8. Терморегулирующая.

Если взять стабилизированную кровь (к крови добавляются вещества, препятствующие ее сворачиванию) и центрифугировать ее, то кровь разделится на 2 части. Сверху будет светло-соломенная жидкость плазма крови, а внизу будет темно-бордовый осадок – форменные элементы. Соотношение этих частей называется гематокритом. В норме в крови 55-60% плазмы 40-45% форменных элементов.

Количество крови у разных животных неодинаково. Для того чтобы узнать количество крови необходимо знать живую массу животного и % крови от массы.

Лошади 9-10%, по некоторым данным до 13%

Свинья, кролики 4-5%

Человек 7-10%

Чем подвижнее животное тем больше у него крови.

В организме кровь бывает:

Циркулирующая – циркулирует по кровяному руслу, ее примерно половина остальная находится в кровяном депо.

Депонированная – находится в кровяном депо, т.е. запасная.

Депо крови:

Печень 20% крови.

Селезенка 16%

Подкожная клетчатка 10%.

Депо крови служат резервуаром крови, при кровопотере депо выбрасывают кровь в кровяное русло восстанавливая объем циркулирующей крови (ОЦК).

При острой потере более 30% крови развивается угрожающее жизни состояние. При хронической кровопотере может быть потеряно больше крови, это объясняется тем что кровяные депо успевают выбросить кровь в кровяное русло.

О берега нашего собственного океана бьются волны, только они совсем не голубые, а алые. Впрочем, венозная кровь, насыщенная углекислотой и другими продуктами обмена, имеет синеватый оттенок. Это, видимо, было известно еще в XI веке. Во всяком случае, высшее дворянство, приближенные короля Кастилии, одного из первых королевств Пиренейского полуострова, сумевшего сбросить мавританское иго, утверждали, что в их жилах течет «голубая кровь». Тем самым они хотели показать, что никогда не роднились с маврами, чья кровь считалась более темной. На самом же деле этой привилегией пользуются лишь некоторые ракообразные, кровь у которых действительно голубая.

У самых низших организмов тканевые жидкости по своему составу мало чем отличаются от обычной морской воды. По мере усложнения животных состав гемолимфы и крови начинает меняться. В ней, кроме солей, появляются физиологически активные вещества, витамины, гормоны, белки, жиры и даже сахара. В наши дни самой сладкой кровью обладают птицы, меньше всего сахара в крови рыб.

Основная функция крови – транспортная. Она разносит по телу тепло, забирает в кишечнике питательные вещества, а в легких кислород и доставляет их потребителям. У самых низших животных кислород, как и другие необходимые вещества, просто растворяются в циркулирующей по телу жидкости. Высшие животные обзавелись специальным веществом, которое легко вступает в соединение с кислородом, когда его много, и легко с ним расстается, когда его становится мало. Такие удивительные свойства оказались присущи некоторым сложным белкам, молекула которых содержит железо и медь. Гемоцианин, белок, содержащий медь, имеет голубой цвет; гемоглобин и другие сходные белки, содержащие в своей молекуле железо, – красный.

Молекула гемоглобина состоит как бы из двух частей – собственно белка и железосодержащей части. Эта последняя у всех животных одинакова, зато для белковой характерны специфические черты, по которым можно различить даже очень близких животных.

Все, что содержится в крови, все, что несет она по сосудам, предназначено для клеток нашего тела. Они отбирают из нее все необходимое и используют на собственные нужды. Только кислородсодержащее вещество должно остаться нетронутым. Ведь если оно будет оседать в тканях, разрушаться там и использоваться на нужды организма, трудно станет транспортировать кислород.

Поначалу природа пошла на создание очень крупных молекул, молекулярный вес которых в два, а то и в десять миллионов раз больше атома водорода, самого легкого вещества. Такие белки неспособны проходить сквозь клеточные мебраны, «застревая» даже в довольно крупных порах; вот почему они подолгу сохранялись в крови и могли многократно использоваться. Для высших животных было найдено еще более оригинальное решение. Природа снабдила их гемоглобином, молекулярный вес которого лишь в 16 тысяч раз больше, чем у атома водорода, но, чтобы гемоглобин не достался окружающим тканям, поместила его, как в контейнеры, внутрь специальных, циркулирующих вместе с кровью клеток – эритроцитов.

Эритроциты большинства животных круглые, хотя иногда их форма почему‑то меняется, становится овальной. Среди млекопитающих такими уродами являются верблюды и ламы. Зачем в конструкцию эритроцита этих животных понадобилось вводить столь значительные изменения, пока точно не известно.

Поначалу эритроциты были большие, громоздкие. У протея, реликтовой пещерной амфибии, их диаметр 35–58 микрон. У большинства амфибий они значительно меньше, однако иногда их объем достигает 1100 кубических микрон. Это оказалось неудобно. Ведь чем больше клетка, тем относительно меньше ее поверхность, через которую в обе стороны должен проходить кислород. На единицу поверхности приходится слишком много гемоглобина, что мешает его полноценному использованию. Убедившись в этом, природа пошла по пути уменьшения размеров эритроцитов до 150 кубических микрон для птиц и до 70 для млекопитающих. У человека их диаметр равен 8 микронам, а объем 90 кубическим микронам.

Эритроциты многих млекопитающих еще мельче, у коз едва достигают 4, а у кабарги 2,5 микрона. Почему именно у коз такие мелкие эритроциты, понять нетрудно. Предки домашних коз были горными животными и жили в сильно разреженной атмосфере. Недаром количество эритроцитов у них огромно, 14,5 миллиона в каждом кубическом миллиметре крови, тогда как у таких животных, как амфибии, интенсивность обмена веществ которых не велика, всего 40–170 тысяч эритроцитов.

В погоне за уменьшением объема красные кровяные клетки позвоночных животных превратились в плоские диски. Так максимально сократился путь диффундирующих в глубь эритроцита молекул кислорода. У человека, кроме того, в центре диска с обеих сторон есть вдавления, что позволило еще больше сократить объем клетки, увеличив размер ее поверхности.

Транспортировать гемоглобин в специальной таре внутри эритроцита очень удобно, но добра без худа не бывает. Эритроцит – живая клетка и сам потребляет для своего дыхания массу кислорода. Природа не терпит расточительства. Ей немало пришлось поломать голову, чтобы придумать, как сократить ненужные расходы.

Самая важная часть любой клетки – ядро. Если его тихонечко удалить, а такие ультрамикроскопические операции ученые умеют делать, то безъядерная клетка, хотя и не гибнет, все же становится нежизнеспособной, прекращает свои основные функции, резко сокращает обмен веществ. Вот это и решила использовать природа, она лишила взрослые эритроциты млекопитающих их ядер. Основная функция эритроцитов – быть контейнерами для гемоглобина – функция пассивная, и пострадать она не могла, а сокращение обмена веществ было только на руку, так как при этом сильно уменьшается и расход кислорода.

Кровь не только транспортное средство. Она выполняет и другие важные функции. Передвигаясь по сосудам тела, кровь в легких и кишечнике почти что непосредственно соприкасается с внешней средой. И легкие и особенно кишечник, бесспорно, самые грязные места организма. Не удивительно, что здесь в кровь очень легко проникнуть микробам. Да и почему бы им не проникать? Кровь – чудесная питательная среда, притом богатая кислородом. Если не поставить тут же, при входе, бдительных и неумолимых стражей, дорога жизни организма стала бы дорогой его смерти.

Стражи нашлись без труда. Еще на заре возникновения жизни все клетки организма были способны захватывать и переваривать частички пищевых веществ. Почти в то же время организмы обзавелись подвижными клетками, очень напоминающими современных амеб. Они не сидели сложа руки, ожидая, когда ток жидкости принесет им что‑нибудь вкусненькое, а проводили жизнь в постоянных поисках хлеба насущного. Эти бродячие клетки‑охотники, с самого начала включившиеся в борьбу с попавшими в организм микробами, получили название лейкоцитов.

Лейкоциты – самые крупные клетки человеческой крови. Их размер колеблется от 8 до 20 микрон. Эти одетые в белые халаты санитары нашего организма еще длительное время принимали активное участие в пищеварительных процессах. Они выполняют эту функцию даже у современных амфибий. Не удивительно, что у низших животных их очень много. У рыб в 1 кубическом миллиметре крови их бывает до 80 тысяч, в десять раз больше, чем у здорового человека.

Чтобы успешно бороться с патогенными микробами, необходимо очень много лейкоцитов. Организм производит их в огромных количествах. Ученым пока не удалось выяснить продолжительность их жизни. Да вряд ли она может быть точно установлена. Ведь лейкоциты – солдаты и, видимо, никогда не доживают до старости, а гибнут на войне, в схватках за наше здоровье. Вероятно, поэтому у различных животных и в различных условиях опыта получились очень пестрые цифры – от 23 минут до 15 дней. Более точно удалось установить лишь срок жизни для лимфоцитов – одной из разновидностей крохотных санитаров. Он равняется 10–12 часам, то есть за сутки организм не меньше двух раз полностью обновляет состав лимфоцитов.

Лейкоциты способны не только странствовать внутри кровяного русла, но при надобности легко его покидают, углубляясь в ткани, навстречу попавшим туда микроорганизмам. Пожирая опасных для организма микробов, лейкоциты отравляются их сильнодействующими токсинами и гибнут, но не сдаются. Волна за волной сплошной стеной они идут на болезнетворный очаг, пока сопротивление врага не будет сломлено. Каждый лейкоцит может «проглотить» до 20 микроорганизмов.

Массами выползают лейкоциты на поверхность слизистых оболочек, где всегда много микроорганизмов. Только в ротовую полость человека – 250 тысяч ежеминутно. За сутки здесь на боевом посту гибнет 1/80 часть всех наших лейкоцитов.

Лейкоциты борются не только с микробами. Им поручена еще одна очень важная функция: уничтожать все поврежденные, износившиеся клетки. В тканях организма они постоянно ведут демонтаж, расчищая места для строительства новых клеток тела, а молодые лейкоциты принимают участие и в самом строительстве, во всяком случае в строительстве костей, соединительной ткани и мышц.

В юности каждый лейкоцит должен решить, кем быть, и в случае надобности становится фагоцитом и идет в бой на микробов, фибробластом – и отправляется на стройку или даже превращается в жировую клетку и, пристроившись где‑нибудь к своим собратьям, не торопясь коротает век.

Безусловно, одним лейкоцитам не удалось бы отстоять организм от проникающих в него микробов. В крови любого животного много различных веществ, которые способны склеивать, убивать и растворять попавших в кровеносную систему микробов, превращать в нерастворимые вещества и обезвреживать выделяемый ими токсин. Некоторые из этих защитных веществ мы получаем по наследству от родителей, другие учимся вырабатывать сами в борьбе с окружающими нас бесчисленными врагами.

Как ни внимательно контрольные приборы – барорецепторы следят за состоянием кровяного давления, всегда возможна авария. Еще чаще беда приходит со стороны. Любая, даже самая незначительная, рана разрушит сотни, тысячи сосудов, и через эти пробоины сейчас же хлынут наружу воды внутреннего океана.

Создавая для каждого животного индивидуальный океан, природе пришлось озаботиться организацией аварийной спасательной службы на случай разрушения его берегов. Поначалу эта служба была не очень надежной. Поэтому для низших существ природа предусмотрела возможность значительного обмеления внутренних водоемов. Потеря 30 процентов крови для человека смертельна, японский жук легко переносит потерю 50 процентов гемолимфы.

Если судно в море получает пробоину, команда старается заткнуть образовавшуюся дыру любым подсобным материалом. Природа в изобилии снабдила кровь собственными заплатками. Это специальные веретенообразные клетки – тромбоциты. По своим размерам они ничтожно малы, всего 2–4 микрона. Заткнуть такой крохотной затычкой сколько‑нибудь значительную дыру было бы невозможно, если бы тромбоциты не обладали способностью слипаться под воздействием тромбокиназы. Этим ферментом природа богато снабдила ткани, окружающие сосуды, кожу и другие места, больше всего подверженные травмам. При малейшем повреждении тканей тромбокиназа выделяется наружу, входит в соприкосновение с кровью, и тромбоциты немедленно начинают слипаться, образуя комочек, а кровь несет для него все новый и новый строительный материал, ведь в каждом кубическом миллиметре крови их содержится 150–400 тысяч штук.

Сами по себе тромбоциты большой пробки образовать не могут. Затычка получается благодаря выпадению нитей особого белка – фибрина, который в виде фибриногена постоянно присутствует в крови. В образованной сети из волокон фибрина застревают комочки слипшихся тромбоцитов, эритроциты, лейкоциты. Проходят считанные минуты, и образуется значительная пробка. Если поврежден не очень крупный кровеносный сосуд и давление крови в нем не настолько велико, чтобы вытолкнуть пробку, утечка будет ликвидирована.

Вряд ли рентабельно, чтобы дежурная аварийная служба потребляла много энергии, а значит и кислорода. Перед тромбоцитами стоит единственная задача – слипнуться в минуту опасности. Функция пассивная, не требующая от тромбоцита значительных затрат энергии, значит, незачем потреблять кислород, пока все в организме спокойно, и природа поступила с ними так же, как и с эритроцитами. Она лишила их ядер и тем самым, сократив уровень обмена веществ, сильно снизила расход кислорода.

Совершенно очевидно, что хорошо налаженная аварийная служба крови необходима, но она, к сожалению, грозит организму страшной опасностью. Что, если по тем или иным причинам аварийная служба начнет не вовремя работать? Такие неуместные действия приведут к серьезной аварии. Кровь в сосудах свернется и закупорит их. Поэтому кровь имеет вторую аварийную службу – антисвертывающую систему. Она следит, чтобы в крови не было тромбина, взаимодействие которого с фибриногеном приводит к выпадению нитей фибрина. Как только тромбин появляется, антисвертывающая система немедленно его инактивирует.

Вторая аварийная служба работает очень активно. Если в кровь лягушки ввести значительную дозу тромбина, ничего страшного не произойдет, он тут же будет обезврежен. Зато если теперь взять у этой лягушки кровь, окажется, что она потеряла способность свертываться.

Первая аварийная система работает автоматически, второй командует мозг. Без его указания система работать не будет. Если у лягушки сначала разрушить командный пункт, находящийся в продолговатом мозгу, а потом ввести тромбин, кровь мгновенно свернется. Аварийная служба наготове, но некому дать сигнал тревоги.

Кроме перечисленных выше аварийных служб, кровь имеет еще и бригаду капитального ремонта. Когда кровеносная система повреждена, важно не только быстрое образование тромба, необходимо также его своевременное удаление. Пока порванный сосуд заткнут пробкой, она мешает заживлению раны. Ремонтная бригада, восстанавливая целостность тканей, понемножку растворяет и рассасывает тромб.

Многочисленные сторожевые, контрольные и аварийные службы надежно охраняют воды нашего внутреннего океана от всяких неожиданностей, обеспечивая очень высокую надежность движения его волн и неизменность их состава.



У здоровых животных химический состав крови является величиной постоянной, несмотря на непрерывное поступление и выделение из нее различных веществ. При патологических состояниях в составе крови наблюдаются определенные сдвиги. Поэтому химический анализ крови широко используется в клинической диагностике при различных заболеваниях. Кроме того, кровь является наиболее доступной тканью и ее можно получать повторно в динамике заболевания без ущерба здоровью больного животного.

Кровь состоит из плазмы и форменных элементов. Плазма на 90% состоит из воды и 10% сухих веществ. Для биологических исследований используют цельную кровь. Плазма крови представляет собой светло-желтую жидкость, образуется она в результате осаждения форменных элементов. После свертывания крови и отделения сгустка получают слегка желтоватую прозрачную жидкость, называемую сывороткой крови. Сыворотка крови не содержит в своем составе фибриногена, который является предшественником фибрина. Желтый цвет сыворотке и плазме придают примеси небольшого количества желтого пигмента билирубина.

Белки плазмы крови являются ее важнейшей составной частью и участвуют во всех физиологических процессах организма. С помощью электрофореза белки сыворотки крови разделяют на 5 основных фракций: альбумины, α 1 -, α 2 -, β- и γ-глобулины. Альбумины, глобулины и фибриноген в плазме крови содержатся в максимальных количествах. Быстро продвигающимся белком в электрофоретическом поле является альбумин, наиболее медленно продвигающимся - γ-глобулин.

Глобулины транспортируют липиды, эстрогены, стероиды, жирорастворимые витамины, жирные кислоты, соли желчных кислот, желчные пигменты, йод, цинк, медь, железо.

Антитела в крови содержатся в форме γ-глобулинов. Их количество в сыворотке крови возрастает при иммунизации животных и инфекциях.

В сыворотке крови содержатся белки, связанные с углеводами - гликопротеиды. В состав их углеводной части входит глюкоза, галактоза.

В плазме находятся белки, содержащие металлы (церуроплазмин, трансферрин) и ферменты, из которых наиболее изучены фосфатаза, липаза, холинэстереза, амилаза, протромбин и др. В организме человека и животных известно более 2000 наследственных заболеваний, среди которых примерно 600 являются ферментативными.

Протромбин – специфический фермент плазмы. Уровень его служит показателем свертывания крови.

С помощью сывороточной холинэстеразы определяют функциональное состояние печени. При заболеваниях паренхимы печени нарушается синтез этого фермента, и активность в сыворотке крови уменьшается.

Активность щелочной фосфатазы повышается при костных заболеваниях, связанных с пролиферацией остеобластов, у молодняка – при рахите. Увеличение этого фермента происходит при усиленном биосинтезе костной щелочной фосфатазы в остеобластах. А ее рост происходит задолго до проявления клинических признаков заболевания.

В плазме крови всегда присутствуют гормоны, а также белки образующие комплексы с такими веществами, как холестерин, жирные кислоты, фосфатиды, а также с витаминами А, D и Е. Если разделить липопротеиды методом электрофореза, можно обнаружить α-липопротеиды, β-липопротеиды и липидный остаток (хиломикроны).

В состав плазмы входят углеводы: глюкоза, фруктоза, гликоген, полисахариды. В крови постоянно присутствуют продукты распада углеводов: молочная, пировиноградная, уксусная, лимонная кислоты. Определение глюкозы в крови имеет большое значение для характеристики углеводного обмена.

Химический состав крови

А. Химический состав плазмы крови

Кровь характеризуется постоянством химического состава. Плазма крови составляет 55-60% общего объема крови и на 90% состоит из воды. Сухой остаток составляют органические (9%) и минеральные (1%) вещества. Основой органических веществ являются белки, большинство которых синтезируется в печени.

Белки плазмы крови. Общее содержание белков млекопитающих колеблется в пределах 6-8%. Известно около 100 белковых компонентов плазмы. Условно их можно разделить на три группы: альбумины, глобулины ж фибриноген. Белки плазмы, которые остались после удаления фибриногена, называют сывороточными белками крови (табл. 9).

Соотношение между содержанием альбуминов и глобулинов определяется альбуминово-глобулиновым коэффициентом - А/Г. У лошади в норме А/Г равен 0,6, у крупного рогатого скота - 0,7-1, у овцы - 0,7-0,9, у свиньи - 0,7-1. А/Г изменяется в онтогенезе, при интенсивной работе и при патологии.

Альбумины участвуют в транспортировании многих веществ: углеводов, жирных кислот, витаминов, неорганических ионов, билирубина и др. Они также обусловливают около 80% онкотического давления, участвуют в регуляции рН, водного и минерального обменов.

Глобулины сыворотки крови делятся на три фракции: α-, β-, γ -глобулины. Каждая фракция, в свою очередь, делится на подфракции (рис. 52). Разделение основано на их различной электрофоретической подвижности. Глобулины сыворотки крови выполняют ряд жизненно важных функций. Так, α - и β -глобулины участвуют в траспортировании к клеткам нерастворимых в воде липидов, стероидных гормонов, витаминов A, D, E и К. Они связывают свыше 2 / 3 холестерина крови. В состав α -глобулинов входят некоторые ферменты, мукопротеины, протромбин и др. Фракция β -глобулинов включает трансферрины, антигемофильный глобулин и др.

γ -Глобулины - белковая фракция сыворотки крови, обладающая наименьшей электрофоретической

Животное Общий белок Альбумины Глобулины
Крупный рогатый скот 7,4 3,3 4,1
Лошадь 7,3 2,7 4,6
Овца 6,8 2,7 4,1
Свинья 8,0 3,5 4,5
Кролик 6,2 4,4 1,8
Курица 4,1 1,2 2,9

подвижностью. γ -Глобулины содержат специфические белки - антитела. Имеют невысокую молекулярную массу (160-300 тыс), их изоэлектрические точки находятся в пределах рН 6,8-7,3. По химической природе антитела можно отнести к гликопротеидам. Антитела появляются в крови в первые дни постнатальной жизни. По иммунологическому действию могут быть лизинами (растворять чужеродные клетки), антитоксинами (нейтрализовывать токсины), агглютининами (связывать чужеродные белки), преципитинами (образовывать осадки с антигенами) и др. Содержание антител возрастает при многих инфекционных и инвазионных заболеваниях. γ -Глобулины, полученные из сыворотки здоровых или иммунизированных животных, применяют с профилактической и лечебной целями. К γ -глобулинам иногда относят комплекс пропердин, способный уничтожать вирусы и бактерии.

Кроме рассмотренных белков, в состав плазмы и сыворотки крови входят свыше 50 ферментов, белковые гормоны и др.

Биосинтез альбуминов в основном протекает в тканях печени. Большинство γ -глобулинов образуется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы, особенно в селезенке, лимфоузлах и костном мозгу. Часть α - и β -глобулинов синтезируется в печени, часть - в клетках ретикулоэндотелиальной системы.

Небелковые азотистые вещества плазмы и сыворотки крови. Эти вещества называют остаточным азотом. Их содержание в плазме и сыворотке крови составляет 0,02-0,06%, возрастает при тяжелой работе, заболеваниях почек, профузных кровотечениях, инфекционных болезнях и др. В состав остаточного азота входят мочевина, аминокислоты, эрготионеин, мочевая кислота, креатин и др. Остаточный азот содержит также полипептиды, образующие кининовую систему, которая

регулирует кровоток, проницаемость стенок сосудов и свертываемость крови.

Безазотистые вещества плазмы и сыворотки крови. К этой группе веществ относятся многие органические соединения.

Углеводы . В плазме крови содержатся глюкоза, фруктоза, гликоген, глюкозамин, фосфаты моноз и другие продукты промежуточного обмена углеводов. Основа углеводов представлена глюкозой. Ее содержание выражается в микромолях. Вместе в глюкозой при этом определяются "примеси" - фруктоза, галактоза, манноза.

Глюкоза и другие монозы в плазме крови находятся в свободной и связанном с белками состоянии. Содержание связанной глюкозы достигает 40-50% общего содержания углеводов.

Среди продуктов промежуточного обмена углеводов выделяется молочная кислота, содержание которой в плазме крови резко возрастает после тяжелой физической нагрузки (например, у лошади с 0,01 до 0,1%).

Липиды . В плазме крови содержится до 0,7% и больше липидов. Липиды находятся в свободном и связанном с белками состоянии. Содержание общих липидов у животных различных видов колеблется в широких пределах, например, у коровы - 0,8%, у кролика - 0,24%. В плазме крови лактирующих коров содержится 0,16% холестеридов, 0,02 - холестерина, 0,15 - фосфюлипидов и 0,03% триглицеридов.

Ацетоновые тела . Содержание в плазме крови крупного рогатого скота ацетоновых тел (β -оксимасляной и ацетоуксусной кислот, ацетона) колеблется от 0,001 до 0,005%. Оно возрастает при кетозах, родильном парезе, сахарном диабете, гепатитах и других болезнях. Возникают ацетонемия, токсикозы, ацетонурия.

Животное Натрий Калий Кальций Магний Фосфор общий Фосфор неорганический Хлор
Лошадь 320,0 18,0 12,0 2,5 12,5 4,8 360,0
Крупный рогатый скот 330,0 19,0 11,0 3,5 11,0 5,0 370,0
Овца 325,0 19,0 11,5 2,5 11,5 6,0 370,0
Свинья 335,0 20,0 12,0 3,0 10,0 5,0 370,0
Курица 375,0 0,22 20,0 2,3 33,0 4,2 470,0

Безазотистые витамины . В плазме крови содержатся многие провитамины и витамины (каротин, ретинол, витамин С и др.).

Минеральные вещества плазмы и сыворотки крови. В крови содержатся различные минеральные вещества. Их биологическое значение разнообразно. Они участвуют в поддержании осмотического давления и постоянства рН среды, служат активаторами и ингибиторами ферментов, являются строительным материалом для органов и тканей, участвуют в защитных реакциях организма. Так, кальций участвует в процессах свертывания крови, магний является составной частью пропердиновой системы.

Б. Химический состав форменных элементов крови

Эритроциты . Эритроциты составляют основную массу крови. В 1 мм 3 крови лошади, например, содержится 6-10 млн эритроцитов, крупного рогатого скота - 5,5-10, овцы - 8-16, козы - 15-19, свиньи - 5,9-9 млн. Размеры эритроцитов млекопитающих составляют около 50 мкм 2 . Небольшие размеры эритроцитов и

большое их количество создают огромную поверхность, что очень важно для процессов дыхания. Образуются в красном костном мозгу. Каждый эритроцит имеет свой жизненный цикл. За это время он осуществляет около 300 тыс. оборотов в сосудистом русле. За сутки разрушается 1% эритроцитов. Средняя продолжительность жизни эритроцита в организме человека составляет 100-120 сут, у собаки - 107, у кролика и кошки - 68. Химический состав эритроцитов у различных видов животных неодинаков (табл. 11).

Эритроциты отличаются высоким содержанием фосфорных эфиров тиамина - 0,00001%. Главные функции эритроцитов - дыхательная, регуляторная и транспортная.

У человека и млекопитающих они не имеют ядер, обладают ничтожно малым клеточным дыханием и хорошо выраженным гликолизом (на 1 мл клеток в течение 1 ч образуется 300-700 мг молочной кислоты).

Основной белок эритроцитов - гемоглобин. Каждый эритроцит содержит до 280 млн молекул гемоглобина. До 97% белка сосредоточено внутри клетки. Благодаря гемоглобину эритроциты в 70 раз быстрее насыщаются кислородом, чем плазма. Кровь поэтому имеет высокую кислородную емкость. У взрослых животных в эритроцитах содержится гемоглобин А. У новорожденных в крови преобладает гемоглобин F. С возрастом его содержание в крови уменьшается и исчезает.

Биосинтез гемоглобина происходит в красном костном мозгу, частично - в печени и селезенке, причем глобин и гем синтезируются отдельно. Вначале из глицина и янтарной кислоты образуется порфобилиноген, затем - порфин и, наконец, гем. Источник для биосинтеза гема - железо ферритинов. Известно 24 формы гемоглобина, из которых 3 имеются у здоровых и 21 - у больных животных.

Кроме гемоглобина, эритроциты содержат стромин, образующий вместе с фосфатидами мембранную основу клетки, ферменты карбоангидразу, каталазу, АХЭ, пептидгидролазы и др.

Лейкоциты . Общая масса их - десятые доли процента по отношению к общему количеству форменных элементов крови. В норме содержится 4-10 тыс. лейкоцитов в 1 мм 3 . Лейкоциты делятся на две группы: гранулоциты (эозинофилы, базофилы, нейтрофилы) и

11. Химический состав эритроцитов, % (по Э. Абдергальдену )

Химическое вещество Собака Кошка Свинья Кролик Бык Лошадь Овца Коза
Вода 64,44 62,12 62,56 63,35 59,19 61,32 60,43 60,87
Сухой остаток 35,38 37,58 37,44 36,65 40,81 38,68 39,52 39,13
Гемоглобин 32,75 33,00 32,68 33,19 31,67 31,51 30,33 32,40
Другие белки 0,99 2,68 1,92 1,22 6,42 5,68 7,85 5,40
Холестерин 0,22 0,13 0,05 0,07 0,34 0,04 0,24 0,17
Лецитин 0,26 0,31 0,35 0,46 0,37 0,40 0,34 0,39

12. Обмен газов крови животных, об. % (по С. И. Афонскому )

Животное 100 мл артериальной крови содержит Животное 100 мл венозной крови содержит 100 мл крови в капиллярах воспринимают
O 2 CO 2 N 2 O 2 CO 2 O 2 CO 2
Лошадь 14,0 49,4 - Лошадь 6,7 55,9 7,3 6,5
Овца 10,7 45,1 1,8 Овца 6,5 48,3 6,3 8,7
Коза 14,1 42-45 - Коза 9,15 55,9 5,0 12,0
Собака 22,4 44,2 1,2 Собака 14,5 50,1 7,9 5,9
Курица 10,7 48,1 - Курица 4,7 47,5 6,6 9,4

агранулоциты (лимфоциты, моноциты). Гранулоциты образуются в красном костном мозгу, лимфоциты - в лимфоузлах, селезенке и других органах, моноциты - в красном костном мозгу, селезенке и лимфоузлах. Лейкоциты в 2-3 раза крупнее эритроцитов. Время созревания гранулоцитов длится 8-10 сут, длительность пребывания в сосудах - от 10 ч до 15 сут. Лимфоциты находятся в крови 2-10 ч, затем несколько месяцев мигрируют в другие ткани, превращаясь в макрофаги и плазматические клетки, которые участвуют в иммунологических реакциях.

Химический состав лейкоцитов изучен мало из-за трудностей выделения достаточного количества клеток для химического анализа. Сухой остаток содержит белки (нуклеопротеиды, альбумины и глобулины), частично - липиды, азотистые экстрактивные вещества и минеральные соединения. Химический состав лейкоцитов (по H. Б. Черняку) следующий, мг на 10 9 клеток:

Азот общий 20,38 Мочевая кислота 0,60
Азот белка 16,32 Креатинин общий 3,69
Азот остаточный 4,06 Креатинин 2,68
Креатин 1,01 Азот аминокислот 1,66
Фосфор общий 5,71 Сахар 0,00

Для лейкоцитов характерна высокая активность ферментов, связанных с деятельностью лизосом: кислой и щелочной фосфатаз, карбоксилэстеразы, липазы, фосфолипаз А и В и др. В лейкоцитах выявлены ЦХО и цитохромпероксидаза, витамины, многие макро- и микроэлементы. Содержание всех этих веществ изменяется при патологии, особенно лейкозах.

Тромбоциты . Тромбоциты, или кровяные пластинки, участвуют в процессах свертывания крови. Образуются в красном костном мозгу. Их форма удлиненно-овальная, размер 2-5 мкм 2 . У млекопитающих тромбоциты не имеют ядер. Продолжительность жизни 8-11 сут.

При травмировании кровеносных сосудов происходит агрегация и агглютинация тромбоцитов, образуется пластинчатый осадок, вокруг которого выпадают нити фибрина, оседают эритроциты и лейкоциты. Тромбоциты богаты белком, липидами, они содержат также фосфатиды, холестерин, гликоген и около 11 факторов

свертывания крови. В сухом остатке тромбоцитов содержатся натрий, калий, кальций, магний, медь, железо и марганец. Тромбоциты отличаются высоким содержанием АТФ, высокой активностью АТФ-азы, АХЭ и др.

Газы крови. В крови содержатся кислород, углекислый газ и азот в свободном и связанном состояниях. Так, 99,5-99,7% кислорода связано с гемоглобином, 0,3-0,5% находится в свободном состоянии.

Газы крови характеризуются постоянным обменом (табл. 12).

Из таблицы 12 следует, что ткани организма из каждых 100 мл артериальной крови извлекают в среднем 5-8% O 2 и отдают в кровь 6-12% CO 2 . Эти процессы протекают благодаря разности парциального давления p газов крови:

Кровь p Ο 2 , кПа p CO 2 , кПа
Артериальная 13,3 5,3
Венозная 5,3-6,7 6,1
Капиллярная 2,7-5,3 6,7

При уменьшении содержания кислорода в крови на 20-25% наступает кислородное голодание. Причинами могут быть горная болезнь, эмфизема легких, пери- и эндокардиты, отравление инертными, ядовитыми газами и др.

Кровь как одна из важнейших систем организма играет большую роль в его жизнедеятельности. Благодаря широко развитой сети кровеносных капилляров она приходит в соприкосновение с клетками всех тканей и органов, обеспечивая таким образом возможность питания и дыхания их. Находясь в тесном соприкосновении с тканями, кровь обладает всеми реактивными свойствами тканей, по ее чувствительность к патологическим раздражениям выше и тоньше, а реактивность - выразительнее и рельефнее. Поэтому всякого рода воздействия на ткани организма отражаются па состав и свойство крови.
Во многих случаях изменение состава крови является вторичным фактором, обусловленным нарушением физиологической деятельности различных систем и органов. Если изменения в крови сказываются па состоянии органов и тканей, то и изменения в функционировании этих органов приводят к изменениям в периферической крови, ее морфологических и других свойств. При нарушении функций органов и тканей, развитии патологических процессов меняется как биохимический, так и морфологический состав крови. Выздоровление же нормализует картину крови. В результате этого анализ крови имеет большое диагностическое значение. Гематологические исследования предсказывают появление первых, неясно выраженных клинических симптомов заболевания, сигнализируют об опасности рецидива, обеспечивают контроль над терапией и течением патологического процесса.
В медицине методом гемоанализа пользуются при самых разнообразных заболеваниях, в некоторых случаях результаты исследования крови составляют основу диагностики и прогноза. В ветеринарной же практике гематологические исследования пока не получили широкого применения. Морфологический анализ крови и кроветворных органов имеет решающее дифференциально-диагностическое значение при заболеваниях системы крови (гемобластозах, анемиях) у животных и птиц, используется при кровепаразитарных болезнях. Вместе с тем исследования крови при многих инфекционных, инвазионных и незаразных болезнях, в хирургии и акушерстве могут дать ценные сведения относительно этиологии, патогенеза, диагностики, прогноза и врачебного вмешательства, при определении иммунной реактивности животных. He менее важное значение исследования крови имеют в зоотехнической практике при объективной оценке интерьерных качеств животного, изучении генетики домашних животных, конституции и классности, молочной и шерстной продуктивности.
Основные функции крови:
- дыхательная - доставка на периферию к тканям и клеткам тела кислорода из легких, необходимого для осуществления окислительных процессов;
- питательная - транспорт питательных веществ (глюкозы, аминокислот, жиров, витаминов, солей, а также вода) из кишечника, используемых организмом для процессов ассимиляции и осуществления различных функций;
- экскреторная - удаление углекислого газа и других конечных продуктов обмена веществ (шлаков-мочевины. аммиака, кератинина и др.) через экскреторные системы (легкие, кишечник, печень, почки, кожу);
- участие в нейрогуморальной регуляции функции организма (перепое медиаторов, гормонов, метаболитов и др.);
- участие в физико-химической регуляции организма (температуры, осмотического давления, кислотно-щелочного равновесия, химического состава коллоидно-осмотического давления);
- защитная целлюлярная (фагоцитоз) и гуморальная (выработка антител).
В отличие от других органов периферическая кровь не объединена в единый орган. Однако она является целостной системой, имеющей строго определенную морфологическую структуру и постоянные многообразные функции, подчиненные точной регуляции и координации. Как подвижная внутренняя среда организма кровь состоит из жидкой части - плазмы (55-60% всей массы крови) и форменных элементов (40-45%) - красных кровяных телец (эритроцитов), белых кровяных телец (лейкоцитов); кровяных пластинок (тромбоцитов). Красный цвет крови и отсутствие прозрачности зависят от содержащихся в ней в огромном количестве красныx кровяных телец. Лейкоциты бесцветны, поэтому и получили название «белые кровяные тельца».
Клеточные элементы довольно равномерно распределены в плазме крови, однако общее число их и процентное соотношение между ними у разных видов животных, в различных органах одного и того же животного неодинаковы. Клеточные элементы образуются в кроветворных органах (костный мозг, селезенка, лимфатические узлы, а также тимус, миндалины и лимфатические образования в желудочно-кишечном тракте), где они продуцируются, поэтому число их в последних намного больше, чем в циркулирующей крови. Количественный состав клеточных элементов крови обусловлен не только пополнением из органов кроветворения, по и темпом их разрушения. В физиологических условиях процессы кроветворения и кроверазрушения находятся в строгой координации, регулируемой гуморальным, гормональным и нервным путями, обеспечивающими постоянство клеточного состава крови. Исходя из этого, введено понятие «система крови», включающее периферическую кровь, органы кроветворения и кроворазрушення, а также нейрогуморальный аппарат их регуляции.
Важнейшую функцию в организме животного выполняют форменные элементы крови, основную часть которых составляют эритроциты. Общая поверхность всех эритроцитов намного больше поверхности человеческого тела. Благодаря этому эритроциты захватывают и переносят достаточное количество кислорода, обеспечивающее полноценную жизнедеятельность всех органов и тканей. Эту функцию крови осуществляет находящийся в эритроцитах дыхательный пигмент гемоглобин - сложное белковое вещество, содержащее железо. Помимо перенесения кислорода из легких к тканям организма и углекислого газа от тканей к легким эритроциты принимают также участие в транспорте аминокислот, адсорбции токсинов и вирусов. Наличие кислорода в эритроцитах придает артериальной крови более яркий красный цвет, а содержание углекислого газа окрашивает венозную кровь в вишнево-красный цвет. Если к цельной крови прилить воды, то происходит гемолиз - гемоглобин переходит в раствор и кровь становится прозрачной.
Функция лейкоцитов - фагоцитирование бактерии и инородных тел, т. е. роль защитников организма. В состав лейкоцитов входят нуклеиновые кислоты, белки, углеводы, липиды, различные ферменты, необходимые для нормальной жизнедеятельности организма. Каждый вид лейкоцитов имеет свои морфологически определяемые признаки, связанные со специфическими функциями. Лейкоциты содержат различного типа зернистости (базофильный, эозинофильный, нейтрофильный и азурофильный), выполняющие разнообразную функцию.
Базофилы содержат гепарин, который препятствует свертыванию крови. При усиливающемся свертывании крови, что может привести к закупорке сосудов, увеличивается количество гепарина, нейтрализующего опасность.
Эозинофилы играют важнейшую роль при аллергических состояниях, т. е. при повышенной чувствительности к какому-нибудь веществу.
Нейтрофилы (микрофаги) первыми окатывают защитную функцию в ходе воспалительных процессов. Они обладают способностью фагоцитировать (пожирать) стафилококки, стрептококки, разрушать эритроциты, детрит и переваривать их в себе. Моноциты (макрофаги) пожирают остатки погибших клеток.
Лимфоциты имеют бедную зернистость, они участвуют в защитных процессах и обмене веществ. Лимфоциты, находящиеся в лимфатических узлах, вступают в борьбу при попытке микробов проникнуть в глубь организма.
Тромбоциты принимают активное участие в свертывании крови. При кровотечении из сосуда растворенный в плазме крови жидкий белок фибриноген переходит в нерастворимое состояние - фибрин, который выпадает в виде нитей и, образуя сгустки (тромбы), закупоривает отверстие в поврежденном сосуде, и кровотечение прекращается.
Плазма крови обладает бактерицидными и антитоксическими свойствами. В ней содержатся все известные химические элементы, различные питательные вещества, соли, щелочи, кислоты, газы, витамины, ферменты, гормоны и микроэлементы, многие из которых (железо, медь, никель, кобальт) принимают участие в кроветворении.
Сыворотка крови - жидкая часть крови без форменных элементов и фибриногена, который при свертывании превращается в сгусток. В ней содержатся вода, белки, углеводы, жиры и минеральные соединения, а также ферменты, гормоны, иммунные тела и т. д. Сыворотка - носительница врожденного и приобретенного иммунитетов против определенных болезней, она же указывает па то, что данный объект перенес определенные болезни. Сыворотка воспринимает вещества внутренней секреции и продукты обмена веществ. Особенности, присущие сыворотке крови как носительнице индивидуальных свойств, зависят от характера содержащихся в ней белковых тел (агглютининов, антитоксинов, бактериолизинов, преципитинов и других веществ).
Большая часть неорганических соединении и газов находится в растворенном состоянии в жидкой части крови, однако некоторые из них, кислород и большинство ферментов находятся в клеточных элементах, т. е. в эритроцитах (например, каталаза и др.), лейкоцитах (оксидаза, липаза и др.) и в тромбоцитах (тромбокиназа). Кислород находится в связанном состоянии с гемоглобином эритроцитов в виде оксигемоглобина (HbO2).
Соли содержатся в плазме в виде анионов и катионов и принимают активное участие в поддержании осмотического давления, которое у людей равно 6,8-7,3 атм. при 37 °С. Реакция крови слабощелочная, близкая к нейтральной (pH 7,4).
Общий объем крови у лошади составляет 9,8% массы тела, коровы 8,1, свиньи - 4,6%. Вода в крови 79%, а плотных веществ 21%, из них на долю неорганических соединений приходится 1,0%, а органических веществ - 20, в том числе на белки - 19%. Из белковых соединений крови наибольшее значение имеет гемоглобин, содержащийся в эритроцитах. К белкам относятся также пластические вещества клеточных элементов, альбумины и глобулины, диспергированные в плазме. Белки крови обеспечивают поддержание уровня онкотического давления. Вязкость крови зависит от присутствия форменных элементов, их количества и объема, а также коллоидных свойств белковых частиц.
Плазма и сыворотка крови прозрачны, со слегка желтоватым или зеленоватым оттенком вследствие растворенных пигментов лютни а и билирубина. Плотность крови у различных животных колеблется в среднем от 1,040 до 1,060, а сыворотки от 1,020 до 1,030. Свежеполученная кровь быстро свертывается, выделяя 0,3-0,5% фибрина, выпадает из плазмы, и в результате получают сыворотку, состоящую из 90% вода и 10% плотных веществ (альбумина и глобулина - 7-8%, хлористого натра - 0,6, глюкозы - 0,1, жиров - 0,5 и мочевины - 0,03%).