Микозы

Механизмы генетической рекомбинации бактериальной днк: трансформация, трансдукция, конъюгация. Комбинативные изменения

Процесс образования геномов, содержащих генетический материал от двух родительских форм . У бактерий осуществляется в результате конъюгации, трансформации, трансдукции.

Рекомбинации подразделяют на законные и незаконные. Законная рекомбинация требует наличия протяженных, комплементарных участков ДНК в рекомбинируемых молекулах. Она происходит только между близкородственными видами микроорганизмов.

Незаконная рекомбинация не требует наличия протяженных комплементарных участков ДНК.

Трансформация - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Клетки, способные воспринимать донор
ную ДНК, называются компетентными. Состояние компетентности непродолжительно. Оно возникает в определенный период роста бактериальной культуры.В состоянии компетентности клеточная стенка бактерий становится проницаемой для высокополимерных фрагментов ДНК. По-видимому, это связано с тем, что трансформируемый фрагмент ДНК связывается с белком, образуя трансформасому, в которой он переносится в бактериальную клетку. Процесс трансформации:

1).Адсорбция ДНК-донора на клетке-реципиенте.

2) проникновение ДНК внутрь клетки-реципиента;

3) соединение ДНК с гомологичным участком хромосомы реципиента с последующей рекомбинацией.

После проникновения внутрь клетки трансформирующая ДНК деспирализуется. Затем происходит физическое включение любой из двух нитей ДНК донора в геном реципиента.

Трансдукция - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом.

Неспецифическая : трансдуцирующие фаги являются только переносчиком генетического материала от одних бактерий к другим, поскольку сама фагоная ДНК не участвует в образовании рекомбинантов.

Специфическая : характеризуется способностью фага переносить определенные гены от бактерии-донора к бактерии-
реципиенту.

Абортивная : принесенный фагом фрагмент ДНК бактерии донора не включается в хромосому бактерии реципиента, а располагается в цитоплазме.

Конъюга́ция - однонаправленный перенос части генетического материала при непосредственном контакте двух бактериальных клеток.

Первым этапом является прикрепление клетки-донора к реципиентной клетке с помощью половых ворсинок.Затем между обеими клетками образуется конъюгационный мостик через который из клетки-донора в клетку-реципиент могут передаваться F-фактор и другие плазмиды, находящиеся в цитоплазме бактерии-донора в автономном состоянии.

16) Биотехноло́гия - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Один из методов получения вакцинных штаммов: метод генной инженерии (инактивация гена, который отвечает за образование факторов вирулентности патогенных микробов).

Н-р,Векторные рекомбинантные вакцины получают методом генной инженерии. Для этого в геном вакцинного штамма встраивают ген (вектор), контролирующий образование антигенов другого возбудителя (чужеродного антигена). Например, в штамм вируса оспенной вакцины встраивают антиген вируса гепатита В(HBs – антиген). Такая векторная вакцина создает иммунитет и против оспы и против гепатита В.

Молекулярные вакцины получают также методом генной инженерии. Так получена вакцина против гепатита В, антигены которого синтезируются клетками дрожжей.

17) Температура – важный фактор, влияющий на жизнедеятельность микроорганизмов. Для микроорганизмов различают минимальную, оптимальную и максимальную температуру. Оптимальная – температура, при которой происходит наиболее интенсивное размножение микробов. Минимальная – температура, ниже которой микроорганизмы не проявляют жизнедеятельности. Максимальная – температура, выше которой наступает гибель микроорганизмов.

Благоприятное действие оптимальной температуры используется при выращивании микроорганизмов с целью лабораторной диагностики, приготовления вакцин и других препаратов.

Тормозящее действие низких температур используется при хранении продуктов и культур микроорганизмов в условиях холодильника. Низкая температура приостанавливает гнилостные и бродильные процессы. Механизм действия низких температур – затормаживание в клетке процессов метаболизма и переход в состояние анабиоза.

Губительное действие высокой температуры (выше максимальной) используетсяпри стерилизации . Механизм действия – денатурация белка (ферментов), повреждение рибосом, нарушение осмотического барьера. Наиболее чувствительны к действию высокой температуры психрофилы и мезофилы. Особую устойчивость проявляют споры бактерий.

Физические методы: стерилизация высокой температурой, Уф облучением, ионизирующим облучением, ультразвуком, фильтрованием через стерильные фильтры.

Пастеризация - частичная стерилизация (споры не погибают), которая проводится при относительно низкой температуре однократно. Пастеризацию проводят при 70-80°С, 5-10 мин или при 50-60°С, 15-30 мин. Пастеризация используется для объектов, теряющих свои качества при высокой температуре.Пастеризацию, например, используют для некоторых пищевых продуктов: молока, вина, пива . При этом не повреждается их товарная ценность, но споры остаются жизнеспособными, поэтому эти продукты нужно хранить на холоде.

Контроль стерилизации.

В связи с распространением в последние годы микроорганизмов, высоко резистентных к действию факторов окружающей среды, ужесточаются способы стерилизации и контроля ее качества.

Для контроля стерилизации используются:

1. Физические методы – максимальные и контактные термометры.

2. Химические вещества как температурные индикаторы. Это порошкообразные вещества со строго определенной температурой плавления: бензонафтол(110°С), антипирин (113°С), резорцин и сера (119°С), бензойная кислота (120°С) . Эти вещества смешивают с небольшим количеством сухой анилиновой краски (фуксин, метиленовый синий) и помещают в запаянные стеклянные трубочки, которые укладывают между стерилизуемыми предметами. Этот метод используют для контроля режима стерилизации в автоклаве . Если температура в автоклаве была достаточной, вещество в трубочке плавится и окрашивается в цвет красителя, который растворяется в этом веществе.

3. Биологические методы – использование термостойкой спорообразующей тест культуры – Bacillus stearothermophilus . Его споры погибают при 121°С за 15 мин при их содержании в 1 мл среды 10 6 клеток. Биологический тест используют для контроля режима стерилизации в печи Пастера . Пробирки с полосками марли, фильтровальной бумаги, с шелковой нитью, зараженные спорами, помещают в шкаф между стерилизуемыми предметами. После стерилизации в пробирку вносят питательный бульон и наблюдают за ростом микроорганизмов.

18) Стерилизация текучим паром.

Метод основан на бактерицидном действии пара (100°С) в отношении только вегетативных клеток.

Аппаратура – автоклав с незавинченной крышкой или аппарат Коха .

Аппарат Коха - это металлический цилиндр с двойным дном, пространство в котором на 2/3 заполнено водой. В крышке – отверстия для термометра и для выхода пара. Наружная стенка облицована материалом, плохо проводящим тепло (линолеум, асбест). Начало стерилизации – время от закипания воды и поступления пара в стерилизационную камеру.

Материал и режим стерилизации.Этим методом стерилизуют материал, который не выдерживает температуру выше 100°С: питательные среды с витаминами, углеводами (среды Гисса, Эндо, Плоскирева, Левина), желатином, молоко.

При 100°С споры не погибают, поэтому стерилизацию проводят несколько раз - дробная стерилизация - 20-30 мин ежедневно в течение 3-х дней.

В промежутках между стерилизациями материал выдерживают при комнатной температуре для того, чтобы проросли споры в вегетативные формы. Они будут погибать при последующем нагревании при 100°С.

Тиндализация и пастеризация.

Тиндализация - метод дробной стерилизации при температуре ниже 100°С. Она используются для стерилизации объектов, которые не выдерживают 100°С: сыворотка, асцитическая жидкость, витамины . Тиндализация проводится в водяной бане при 56°С по 1 часу 5-6 дней.


Похожая информация.


Рекомбинация у прокариот. Трансформация. Конъюгация. Трансдукция. Особенности построения генетических карт у прокариот.

Генетическая рекомбинация

Генотипическая изменчивость прокариот наблюдается в результате рекомбинации генетт-го материала за счет частичного объединения геномов двух клеток и проявляется в фенотипе бактерий. К рекомбинативной изменчивости генетт-го материала прокариот приводят трансформация, трансдукция и конъюгация.

В отличие от эукариот, у которых при половом процессе происходит образование истинной зиготы, объединяющей генетт.материал обоих родителей, у прокариот при всех трех вышеуказанных процессах наблюдается лишь частичный перенос генет-го материала из клетки-донора в клетку-реципиент, что приводит к обр-ию неполноценной зиготы – мерозиготы . Т.о., прокариотная клетка-реципиент становится частично диплоидной, сохраняя в основном генотип клетки-реципиента и приобретая лишь отдельные свойства клетки-донора.

Ответственность за рекомбинации несут специальные гены клетки-реципиента, получившие название rec-генов . Механизм рекомбинаций включает ряд последовательных стадий:
1) разрыв нитей ДНК клетки-реципиента;
2) встраивание фрагментов ДНК, привнесенных из клетки-донора в геном клетки-реципиента;
3) репликация рекомбинативной ДНК, дающей начало потомству клеток с измененным геномом.

Доказательства вышеуказанного механизма рекомбинации были экспериментально получены при изучении процесса конъюгации кишечной палочки (E.coli) с использованием меченных по фосфору (Р 32) клеток-доноров.

Трансформация (от лат.– преобразование) – изменение генома и свойств бактерий в рез-те переноса информации при проникновении фрагмента свободной ДНК из среды в кл-ку. При трансформации не требуется непосредственного контакта м/у клеткой-донором и клеткой-реципиентом. Источником трансформирующей ДНК может служить свежеубитая культура бактерий или чистые препараты ДНК, экстрагированной из нее.



Явление трансформации у бактерий впервые наблюдал Ф. Гриффитс в 1928 г. Он обнаружил, что при совместном ведении в организм мышей убитого вирулентного капсульного пневмококка S-типа с живым авирулентным бескапсульным пневмококком R-типа все животные погибают. При этом из крови погибших мышей наряду с бескапсульными пневмококками R-типа выделяются вирулентные капсульные пневмококки S-типа. Гриффитс не сумел объяснить явление трансформации. Лишь в 1944 г. О. Эвери, К. Мак-Леод и М. Мак-Карти выделили трансформирующее вещество из убитых клеток капсульных пневмококков и показали, что им является ДНК, чувствительная к ДНК-полимеразе.

Процесс трансформации проходит в несколько этапов :
1) адсорбция трансформирующей ДНК на поверхности компетентной клетки-реципиента;
2) ферментативное расщепление трансформирующей ДНК с образованием фрагментов со средней молекулярной массой (4-5)·10 6 ;
3) проникновение фрагментов ДНК в клетку-реципиент, сопровождающееся деградацией одной из цепей ДНК и образованием одноцепочечных фрагментов;
4) интеграция – включение фрагментов трансформирующей ДНК в ДНК клетки-реципиента путем генетт-го обмена;
5) экспрессия – интенсивное размножение трансформированных клеток, потомство которых будет иметь измененный ген в молекуле ДНК.

Трансформирующий фрагмент ДНК обычно соответствует 0,3% бактериальной хромосомы, или примерно 15 генам. В клетку-реципиент проникает очень малый фрагмент ДНК, что обуславливает трансформацию только одного признака и редко двух. Путем трансформации из одной клетки в другую могут быть перенесены такие признаки бактерий, как устойчивость к лекарств.препаратам, способность к синтезу капсульных полисахаридов, ферментов, определенных метаболитов и т.д. При трансформации не происходит добавления качественно нового наследственного признака, наблюдается лишь замена одного признака другим.

Трансдукция заключается в переносе генетт-го материала из клетки-донора в клетку-реципиент умеренным бактериофагом. Явление трансдукции в 1952 г. открыли Н. Циндер и Дж. Ледерберг на примере двух штаммов сальмонелл.

По механизму взаимодействия с бактериальной клеткой фаги подразделяются на вирулентные и умеренные. Вирулентные фаги, проникая в клетку, обусловливают формирование новых фагов и лизис бактерий. Заражение клеток умеренными фагами не всегда сопровождается лизисом бактерий, часть их выживает и становится лизогенными. В лизогенных бактериях ДНК-фага включается в ДНК-клетки и умеренный фаг превращается в профаг, утрачивая при этом способность лизировать бактериальную клетку. Профаг ведет себя как часть бактериальной хромосомы и репродуцируется в ее составе в течение ряда поколений. Освобождение умеренных фагов из клеток лизогенных бактерий происходит спонтанно либо под действием лизогенных бактерий происходит спонтанно либо под действием индуцированных агентов – ультрафиолетовых лучей, ионизирующей радиации и химических мутагенов.

В процессе репродукции некоторых умеренных фагов небольшой фрагмент бактериальной хромосомы, включается в геном фага. Трансдуцирующий фаг переносит фрагмент ДНК предыдущего хозяина в новую чувствительную к нему бактериальную клетку. Т.о., бактериальная клетка-реципиент становится частичной зиготой.

У бактерий различают 3 типа трансдукции : специализированную, общую и абортивную.

Специализированная - в геном фага включаются строго определенные гены ДНК бактерии-донора, расположенные на хромосоме бактерии непосредственно рядом с профагом. Прилегающие к профагу гены выщепляются из бактер-ой хромосомы, а часть генов профага остается в ее составе. Освобождающиеся из клетки-донора трансдуцирующие дефектные фаги вызывают лизогенезацию клетки-реципиента. ДНК дефектного фага включается в состав хромосомы клетки-реципиента, привнося в нее и гены бактерии-донора.

Общая - отличается от специализ-ой тем, что в состав ДНК фага включается любой фрагмент ДНК бактерии-донора. Т.о., при общей трансдукции трансдуцирующие фаги переносят из хромосомы бактерии-донора любые гены, контролирующие различные признаки, в клетку бактерии-реципиента.

Абортивная - фрагмент хромосомы клетки-донора, привнесенный трансдуцирующим фагом в клетку-реципиент, не включается в ее хромосому, а локализуется в цитоплазме и при делении клетки-реципиента передается только одной из образующихся клеток.

Трансдукция в эксперименте показана на кишечных бактериях, псевдомонадах, стафилококках, бациллах и актиномицетах. Трансдукция определяет появление разновидностей бактерий с новыми свойствами, устойчивость к лекарственным препаратам, синтез ферментов, аминокислот и др.

В экспериментах по генной инженерии трансдукция открывает не только широкие возможности межвидовой гибридизации бактерий, но и возможность получения гибридов среди разных групп прокариот.

Конъюгация происходит при непосредственном контакте бактер-ых кл-ок и предусматривает направленный перенос генетт-го материала из клетки-донора в клетку-реципиент. Феномен конъюгации в 1946 г. описали Дж. Ледерберг и Э. Тейтум на примере кишеч.палочки (E.coli) штамма К 12 .

Способность бактерий к конъюгации связана с наличием у них полового F-фактора, относящегося к числу конъюгативных плазмид. Клетки, несущие F-фактор, обозначаются F + ; клетки, лишенные F-фактора, - F ¯ . F-фактор (F-плазмида) в клетках F + обычно находится в изолированном состоянии от бактериальной хр-мы и является цитоплазматической структурой. Бактер-ые клетки, содержащие F-фактор, отличаются от остальных клеток рядом свойств: измененным поверхностным зарядом и способностью синтезировать дополнительные поверхностные структуры F-пили.

Процесс конъюгации начинается с прикрепления конца F-пили клетки-донора к клетке-реципиенту. В теч.неск-их минут клетка-донор и клетка-реципиент сближаются, возможно, за счет сокращения F-пили и вступают в непосредственный контакт. Ч/з цитоплазматический мостик по каналу F-пили, менее чем за 5 мин, происходит передача полового F-фактора, независимо от бактериальной хромосомы, из цитоплазмы клетки-донора F + в цитоплазму клетки-реципиента F ¯ . При этом клетка-донор не теряет своей донорной способности, так как в ней остаются копии F-фактора.

Среди популяции клеток F + имеются бактерии, способные при конъюгации передавать не F-фактор, а фрагмент бактериальной хромосомы. Эти клетки бактерий и образованные ими штаммы обозначаются Hfr (high frequency of recombination), что означает бактерии с высокой частотой рекомбинации. Рекомбинации м/у кл-ми Hfr и кл-ми F ¯ происходят в тысячу раз чаще, чем между клетками F + и F ¯ . Отличие клеток Hfr от клеток F + заключается в том, что половой F-фактор у них включён в бактериальную хромосому. Во время конъюгации в клетке-доноре Hfr идет процесс репликации ДНК. При этом одна из реплицирующихся цепей ДНК ч/з конъюгационный мостик проникает в клетку-реципиент F ¯ , вторая остается в клетке-доноре Hfr, затем каждая из этих цепей достраивается комплементарной нитью. Конъюгационный мостик непрочен, он легко разрывается, поэтому из клетки-донора Hfr в клетку-реципиент F ¯ передается не вся хромосома, а лишь ее фрагмент.

М/у перенесенным из клетки Hfr фрагментом хромосомы и гомологичным участком хромосомы клетки F ¯ происходит генет-ий обмен. В результате часть донорной ДНК встраивается в ДНК реципиента, а соответствующая часть реципиентной ДНК исключается из нее. Эффективность включения донорной ДНК в хромосому реципиента высока и составляет примерно 0,5.

Конъюгацию прокариот не следует отождествлять с половым процессом эукариот, т.к.при конъюгации в клетку F ¯ передается только часть генет-го материала клетки F + , в результате чего образуется неполноценная мерозигота. Основу последней составляет геном клетки-реципиента с привнесенной частью генома клетки-донора.

Наряду со стабильностью и точностью наследственных свойств генетический аппарат прокариот характеризуется изменчивостью, которая проявляется в форме мутаций и рекомбинаций.

Спонтанные мутации прокариот следует считать начальным видом изменчивости, возникшим параллельно началу функционирования их ДНК как генетической структуры. Возможно, что на протяжении миллионов лет мутации были единственным механизмом изменчивости прокариот.

Скачком в эволюции прокариот явилось появление рекомбинативной изменчивости, заключающейся в частичном объединении генет-ой информации двух прокариотных клеток донора и реципиента. Т.о. возник новый дополнительный материал для естеств.отбора, ускоряющий процесс эволюции. Из трех вышерассмотренных рекомбинативных процессов наиболее совершенным является конъюгация, т.к.она обеспечивает более полный обмен генетической информации м/у двумя клетками. Известны случаи, когда при длительной конъюгации (90 мин) двух клеток E.coli наблюдается вхождение всей хромосомы клетки-донора в клетку-реципиент.

Эффективность генет-их рекомбинаций оказывается высокой только для близкородственных бактерий, имеющих родство в пределах вида.

Особенности построения генетических карт у прокариот

Для построения генетт.карт у прокариот используется явление конъюгации – переноса генетт-го материала из одной клетки в другую с помощью спец.кольцевых молекул ДНК (плазмид, в частности, с помощью F–плазмиды).

Вероятность переноса определенного гена в клетку–реципиент зависит от его удаления от F–плазмидной ДНК, а точнее, от точки О, в которой начинается репликация F–плазмидной ДНК. Чем больше время конъюгации, тем выше вероятность переноса данного гена. Это дает возможность составить генетическую карту бактерий в минутах конъюгации. Например, у кишечной палочки ген thr (оперон из трех генов, контролирующих биосинтез треонина) находится в нулевой точке (то есть непосредственно рядом с F–плазмидной ДНК), ген lac переносится через 8 мин, ген recE – через 30 мин, ген argR – через 70 мин и т.д.

микроб пищеварение инфекция

Рекомбинация -- процесс обмена генетическим материалом путем разрыва и соединения разных молекул. Рекомбинация происходит при репарации двунитевых разрывов в ДНК и для продолжения репликации в случае остановки репликационной вилки у эукариот, бактерий и архей. У вирусов возможна рекомбинация между молекулами РНК их геномов.

Рекомбинация у эукариот обычно происходит в ходе кроссинговера в процессе мейоза, в частности, при формировании сперматозоидов и яйцеклеток у животных. Рекомбинация, наряду с репликацией ДНК, транскрипцией РНК и трансляцией белков, относится к фундаментальным, раноГомологичная рекомбинация

Гомологичная рекомбинация

Классификация типов гомологичной рекомбинации: аллельная, эктопическая и гомеологичная; реципрокная (кроссинговер) и нереципрокная (генная конверсия).

Реципрокная рекомбинация. Ранние представления о природе кроссинговера: гипотезы “разрыв и соединение” и “выборочное копирование”. Опыты Мезелсона по доказательству механизма “разрыв и соединение”. Разработка методических подходов к изучению молекулярных механизмов рекомбинации. Два этапа формирования рекомбинантной ДНК: “состыкованная” (joint) и первичная рекомбинантная молекулы.

Генетический контроль гомологичной рекомбинации у бактериофагов. Система Red у бактериофага l. Экзонуклеаза l. Система Orf. Бактериофаг Т4: роль генов 30, 32, 43, 46, 47, 49 и uvsX. Энзимология рекомбинационных реакций: эндо- и экзонуклеазы, ДНК-полимераза, ДНК-лигаза, белок UvsX, белок SSB и другие белки. Процессы “вытеснения нити”, образования D-петли, “миграции ветвления”, коррекции гетеродуплекса. Основные стадии кроссинговера: пресинапсис, синапсис и постсинапсис. Схемы кроссинговера у бактериофагов. Общность процессов рекомбинации и репарации ДНК.

Основные модели гомологичной рекомбинации. Модель Холлидея. Предпосылки модели, сущность, значение. Развитие модели в последующих исследованиях, ее современное состояние. Модель Мезелсона-Рэдинга. Модель репарации двунитевых разрывов (ДНР) ДНК у дрожжей (Жостак и др.) применительно к кроссинговеру и конверсии.

Рекомбинация при трансформации хромосомной ДНК у бактерий. Параметры рекомбинации. Размеры интегрируемых фрагментов донорной ДНК. Кинетика и эффективность трансформации. Доказательства интеграции однонитевых фрагментов донорной ДНК. Генетический контроль и основные этапы процесса трансформации у Bacillus subtilis и Streptococcus pneumoniae. Донорно-реципиентный комплекс. Генетический контроль и механизм рекомбинации при трансформации у Haemophilus influenzae. Трансформосома.

Рекомбинация при конъюгации у Escherichia coli. Характеристика конъюгационного переноса ДНК. Механизмы интеграции донорной ДНК в хромосому реципиентной клетки.

Генетический контроль гомологичной рекомбинации у E.coli. Гены, участвующие в пресинапсисе: recA, recB, recC, recD, recE, recJ и др. Плейотропный эффект мутаций recB и recC. АТФ-зависимая RecBCD-нуклеаза, ее актвности, механизмы действия и роли в различных генетических процессах. Chi-сайт как горячая точка рекомбинации. Универсальность АТФ-зависимых нуклеаз для бактерий. Гены, контролирующие процесс синапсиса: recA, recF, recO, recR, ssb и др. Свойства recA-мутантов. Белок RecA, его характеристика. Реакции, катализируемые белком RecA, его ключевая роль в первых этапах процесса кроссинговера: пресинапсисе и синапсисе. Природа синапсиса при гомологичной рекомбинации. RecA-ДНК-филаменты, их структура и функции в рекомбинации. Схема кроссинговера у E.coli с участием RecBCD-нуклеазы и белка RecA. RecA-гомологи у других прокариотических и эукариотических организмов. Роль белка SSB. Гены постсинапсиса: ruvA, ruvB, ruvC, recG и их продукты. Pоль в осуществлении миграции полухиазмы Холлидея и в ее разрешении.

Супрессорные мутации sbcA, sbcB, sbcC и sbcD. Экзонуклеазы I и VIII. SbcCD-нуклеаза. Три пути рекомбинации хромосомной ДНК у E.coli K-12 по Кларку: RecBCD, RecF и RecE, их характеристика. Роль путей RecF и RecE в гомологичной рекомбинации плазмид.

Особенности процесса кроссинговера у эукариот. Мейотический кроссинговер. Роль синаптонемного комплекса. Генетический контроль мейотической рекомбинации. Разнообразие RecA-подобных белков (рекомбиназ) у эукариот.

Митотический кроссинговер: соотношение между реципрокной и нереципрокной рекомбинацией. Кроссинговер в G1-клетках. Различия в генетическом контроле мейотического и митотического кроссинговера у дрожжей-сахаромицетов.

Горячие точки рекомбинации у эукариот. Роль ДНР ДНК в инициации мейотического и митотического кроссинговера.

Рекомбинационная репарация ДНР в хромосомной и плазмидной ДНК у дрожжей. Генетический контроль и разнообразие механизмов: модель Жостака и др. и ее модификации, механизмы “разрыв и копирование”, “отжиг комплементарных цепей ДНК” (“single-strand annealing”), “гомолог-зовисимое лигирование”.

Эктопическая рекомбинация, ее генетический контроль, молекулярные механизмы и биологическое значение.

Конверсия гена (коррекция рекомбинационного гетеродуплекса). Нереципрокность внутригенной рекомбинации. Гипотеза коррекции неспаренных оснований (Холлидей). Генетический контроль и пути коррекции гетеродуплексов у E.coli. Системы репарации неспаренных оснований с образованием и застройкой протяженных брешей в гетеродуплексе. Система Mut HLSU, ее характеристика. Молекулярная модель коррекции гетеродуплекса с участием системы MutHLSU. Эволюционный консерватизм белков MutL и MutS. Роль белков MutL и MutS в процессах коррекции неспаренных оснований и в регуляции гомеологичной рекомбинации. Системы коррекции неспаренных оснований у E.coli с формированием и застройкой коротких брешей. Коррекция гетеродуплексов при бактериальной трансформации, ее генетический контроль (система Hex), влияние на результаты генетического картирования. Коррекция и высокая отрицательная интерференция.

Конверсия гена у эукариот. Тетрадный анализ межаллельных скрещиваний. Типы тетрад. Полярность конверсии, ее причины. Коконверсия. Протяженность участка конверсии. Вопрос о связи мейотической конверсии с реципрокной рекомбинацией фланговых маркеров. Митотическая аллельная генная конверсия. Эктопическая мейотическая и митотическая конверсия. Переключение локусов MAT у гомоталличных дрожжей. Генетический контроль конверсии гена у экариот на примерах дрожжей и человека. Эукариотические гомологи бактериальных белков MutL и MutS - семейства белков PMS, MHL, MHS и др., их функции в рекомбинации и других клеточных процессах. Сложность систем коррекции неспаренных оснований у эукариот, основанная на участии разнообразных гомологов батериальных белков MutL и MutS.

Роли конверсии в эволюции и в онтогенезе. Соотношение между процессами кроссинговера и конверсии в различных генетических системах. Конверсионные процессы, осуществляющиеся независимо от кроссинговера.

Рекомбинационные процессы, не нуждающиеся в гомологии для синапсиса

Сайт-специфическая рекомбинация. Распространение сайт-специфических рекомбинационных систем у прокариот и эукариот, их функции. Сайт-специфические топоизомеразы типа I как ключевые белки сайт-специфической рекомбинации у бактериофагов, бактерий и дрожжей. Два семейства сайт-специфических топоизомераз I - интегразы и резолвазы.

Сайт-специфическая рекомбинация при интеграции и эксцизии фага l. Схема Кемпбела. Различия между генетическими картами вегетативного фага и профага. Структура сайтов attP и attB. Система Int. Int-белок как представитель семейства интеграз. Белок IHF E.coli. Интасома. Молекулярная модель интеграции и эксцизии фага l. Антипараллельное выстраивание att-сайтов при синапсисе. Природа синапсиса при сайт-специфической рекомбинации.

Сайт-специфические инверсии ДНК у бактериофагов и бактерий (система Din) и у дрожжей. Ключевые белки рекомбинации - инвертазы как представители семейства резолваз. Рекомбинационные энхансеры для сайт-специфических инверсий. Белок Fis E.coli. Инвертасома. Молекулярная модель рекомбинации, осуществляемой резолвазами. Роль сайт-специфических инверсий в регуляции экспрессии генов.

Транспозиции подвижных генетических элементов. Транспозиции у прокариот. Подвижные генетические элементы: IS-элементы, транспозоны (Tn), фаг Мu. Структура подвижных элементов. Функции, контролируемые различными подвижными элементами. Транспозаза. Участие белков клетки-хозяина в транспозиции. Вопрос о специфичности интеграции подвижного элемента в ДНК-мишень. Общность реакций, составляющих процессы транспозиции у разных типов подвижных элементов прокариот и эукариот.

Генетическая организация простых транспозонов семейства Tn3. Гены tnpA и tnpR, их продукты. Репликативная транспозиция, два этапа процесса. Молекулярная модель Шапиро. Генетический контроль и молекулярный механизм нерепликативной транспозиции у сложных транспозонов Tn5, Tn9 и Tn10. Генетический контроль и механизмы транспозиции у фага Mu. Транспозосома.

Конъюгативные транспозоны грамположительных и грамотрицательных бактерий, их классификация. Генетический контроль и механизмы транспозиции. Биологическое значение.

Подвижные генетические элементы эукариот (дрожжи, растения, дрозофила, млекопитающие). Классификация эукариотических подвижных элементов. Элементы со структурой прокариотического типа. Ретротранспозоны типа I у дрожжей, растений и животных, их структура, генетический контроль и механизм транспозиции, классификация. Ретротранспозоны типа II: особенности строения, распространение, механизм транспозиции.

Генетические эффекты, вызываемые подвижными элементами у прокариот и эукариот: изменения экспрессии генов, генные мутации, хромосомные перестройки, гибридный дисгенезиз. Участие подвижных элементов в организации структуры хромосом. Роль в онтогенезе живых организмов и в эволюции генетического материала. Подвижные элементы как инструмент генетических исследований.

Незаконная рекомбинация. Круг явлений, относимых к незаконной рекомбинации. Негомологичная рекомбинация у бактерий, катализируемая ДНК-гиразой. Молекулярная модель (Икеда). Негомологичная рекомбинации с участием ДНК-зависимой протеинкиназы у позвоночных. Роль в репарации двунитевых разрывов, интеграции экзогенной ДНК в хромосомы и в перестройках иммуноглобулиновых последовательностей ДНК.

Запрограммированные рекомбинационные перестройки генетического материала в онтогенезе

Состыковка разобщенных частей генов с помощью сайт-специфической рекомбинации в процессе споруляции у Bacillus subtilis и при формировании гетероцист у нитчатых цианобактерий. Перестройка генетического материала при образовании макронуклеуса у ресничных инфузорий. Диминуция хроматина у ряда представителей беспозвоночных.

Сайт-специфическая рекомбинация у позвоночных, участвующая в перестройках иммуноглобулиновых последовательностей ДНК. Структура молекул иммуноглобулинов. Организация и структура последовательностей ДНК, участвующих в формировании генов, кодирующих иммуноглобулины. Роль продуктов генов RAG1 и RAG2. Механизм сайт-специфической рекомбинации при состыковке кодирующих сегментов генов иммуноглобулинов. Участие других генетических процесов в формировании генов иммуноглобулинов: гомологичная рекомбинация (эктопический митотический кроссинговер, эктопическая митотическая конверсия), незаконная рекомбинация, гипермутагенез, альтернативный сплайсинг. Приуроченность этих процессов к определенным стадиям дифференцировки B-лимфоцитов.

Трансформация -- процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Иногда под трансформацией понимают любые процессы горизонтального переноса генов, в том числе трансдукцию, конъюгацию и т. д.

Трансформация прокариот

В любой популяции лишь часть бактерий способна к поглощению из среды молекул ДНК. Состояние клеток, при котором это возможно, называют состоянием компетентности. Обычно максимальное число компетентных клеток наблюдается в конце фазы логарифмического роста.

В состоянии компетентности бактерии вырабатывают особый низкомолекулярный белок (фактор компетентности), активизирующий синтез аутолизина, эндонуклеазы I и ДНК-связывающего белка. Аутолизин частично разрушает клеточную стенку, что позволяет ДНК пройти через неё, а также снижает устойчивость бактерий к осмотическому шоку. В состоянии компетентности также снижается общая интенсивность метаболизма. Возможно искусственное приведение клеток в состояние компетентности. Для этого применяют среды с высоким содержанием ионов кальция, цезия, рубидия, электропорацию или заменяют клетки реципиента протопластами без клеточных стенок.

Эффективность трансформации определяется количеством колоний, выросших на чашке Петри после добавления к клеткам 1 мкг суперскрученной плазмидной ДНК и рассева клеток на питательную среду. Современные методы позволяют добиваться эффективности 106--109.

Поглощаемая ДНК должна быть двухнитевой (эффективность трансформации однонитевой ДНК на порядки ниже, однако несколько возрастает в кислой среде), её длина -- не менее 450 пар оснований. Оптимальное pH для прохождения процесса -- около 7. Для некоторых бактерий (Neisseria gonorrhoeae, Hemophilus) поглощаемая ДНК должна содержать определённые последовательности.

ДНК необратимо адсорбируются на ДНК-связывающем белке, после чего одна из нитей разрезается эндонуклеазой на фрагменты длиной 2--4 тыс. пар оснований и проникает в клетку, вторая полностью разрушается. В случае, если эти фрагменты имеют высокую степень гомологии с какими-либо участками бактериальной хромосомы, возможна замена этих участков на них. Поэтому эффективность трансформации зависит от эволюционного расстояния между донором и реципиентом. Общее время процесса не превышает нескольких минут. Впоследствии, при делении, в одну дочернюю клетку попадает ДНК, построенная на основе исходной нити ДНК, в другую -- на основе нити с включённым чужеродным фрагментом (выщепление)

Трансформация эукариотических клеток с использованием синтетических полимерных катионов

Доставка чужеродных нуклеиновых кислот внутрь интактных клеток, или трансформация, лежит в основе многих методов генной инженерии. Транспортировка функциональных генов в ткани может сделать возможной коррекцию генной недостаточности и мутаций, следствием которых являются тяжелые наследственные патологии или раковые опухоли. В настоящее время разработан целый ряд приемов для введения ДНК в клетки, среди которых наиболее распространены преципитация фосфатом кальция или диэтиламиноэтил-декстраном (ДЕАЕ-декстраном), электропорация, микроинъекция, встраивание ДНК в реконструированную оболочку вирусов или липосомы (искусственные мембранные липидные везикулы).

Несмотря на разнообразие этих методов, поиск новых путей трансформации про- и эукариотических клеток продолжается. С одной стороны, это вызвано необходимостью повышения эффективности трансформации, с другой - перечисленные выше методы применимы лишь для ограниченного числа клеточных линий и неэффективны при попытках введения в клетки РНК. Наконец, большинство этих подходов не может быть использовано для генетической трансформации in vivo.

В качестве переносчиков ДНК используются ретровирусные векторы, векторы на основе ДНК-содержащих вирусов и ВИЧ, липосомы на основе катионных липидов, полимерные ДНК-связывающие катионы. Использование синтетических полимеров в качестве переносчиков ДНК имеет ряд преимуществ: удобство хранения и очистки, простота тестирования токсичности и безопасности и, что особенно важно для генной терапии, снижение риска патогенетических и иммунологических осложнений.

При смешивании растворов линейных поликатионов и ДНК формируются интерполиэлектролитные комплексы (ИПЭК) за счет образования кооперативной системы межцепных электростатических связей. При этом поликатионные цепи окружают молекулу ДНК, образуя сферы или тороиды, в зависимости от типа полимера. Включение в ИПЭК приводит к компактизации ДНК, повышению ее устойчивости к действию нуклеаз, способствует усилению ее взаимодействия с клеточной мембраной и повышению трансформирующей активности по отношению как к прокариотическим, так и эукариотическим клеткам. Соединяя молекулы поликатиона с лигандами, способными к специфическому связыванию с клеточной мембраной, можно обеспечить проникновение ИПЭК в клетку по рецепторному пути, а в организме - адресную доставку к клеткам-мишеням.

Системы доставки ДНК для применения в генной терапии должны обеспечивать проникновение ДНК в нужный орган, ткань, или в конкретную группу клеток, а затем - в клеточное ядро. Антисмысловые олигонуклеотиды, а именно они чаще всего используются в генной терапии, должны найти ту мРНК или участок хромосомной ДНК, против которой они направлены. Введенный ген должен войти в состав конструкции, способной его экспрессировать.

Однако это довольно сложная проблема. При введении нуклеиновой кислоты или олигонуклеотида в организм они не попадут преимущественно к нужной ткани или нужному органу, а та их часть, которая окажется в нужном месте, лишь в незначительной мере сможет пройти сквозь гидрофобную клеточную мембрану. Кроме того, в ходе эволюции были выработаны механизмы защиты клеток организма от вторжения факторов внешней среды, в том числе и чужеродной ДНК. Оказавшись внутри клетки, чужеродная ДНК может локализоваться не там, где это необходимо и, более того, может оказаться в лизосомах, где будет разрушена под действием нуклеаз.

Проникновение в клетку и внутриклеточный транспорт ИПЭК происходит, возможно, за счет образования и последовательного разрушения эндосом. На каждом из этапов этого процесса существенная часть материала теряется. Скудное высвобождение векторов из эндосом в цитоплазму и неэффективный перенос их в ядро приводят к низкой эффективности трансгенной экспрессии.

Рестрикционная карта плазмиды pBR 322:

цифрами указана нумерация нуклеотидов;

тонкие черточки - единичные сайты, узнаваемые рестриктазами;

толстые серые стрелки сверху - направление транскрипции;

Pbla - промотор гена Ampr - устойчивость к ампициллину;

Ptet- промотор гена Tetr- устойчивость к тетрациклину;

TТ1 - Rho-независимый терминатор транскрипции (положение 3140-3160); ТТ2 - положение 3080-3110; ROP - белок, способствующий образованию дуплексов между РНК 1 и РНК 2 (негативный регулятор копийности); РНК 1 - контрольная РНК (контролирует копийность плазмиды); РНК 2 - «праймерная» РНК (служит затравкой для репликации); толстые черные стрелки - направление транскрипции РНК 1 и РНК 2


Векторы на основе фага М13

Можно выделить три пути повышения эффективности переноса ДНК в эукариотические клетки с помощью синтетических поликатионов. Во-первых, это повышение специфичности трансфекции за счет лигандов, соединенных с молекулой поликатиона и обеспечивающих избирательное взаимодействие комплексов с клетками определенного фенотипа. Во-вторых - повышение эффективности трансформации за счет подбора генов или олигонуклеотидов, внедряемых в клетку. В-третьих - повышение частоты трансфекции, которое достигается за счет применения лигандов, более эффективно взаимодействующих с клеточной мембраной, и веществ, дестабилизирующих мембрану. Кроме того, возможен синтез новых поликатионов.

В лаборатории молекулярной вирусологии и генной инженерии НИИ гриппа РАМН в Санкт-Петербурге проводится изучение средств доставки ДНК и вирусных частиц в клетки. В этой работе используется набор полимерных носителей, синтезированный сотрудниками Института высокомолекулярных соединений РАН. В качестве экспрессионных векторов использовались плазмиды: pUC 18, содержащая цитомегаловирусный промотор и ген b-галактозидазы, и pBR 322, содержащая цитомегаловирусный промотор и ген зеленого флуоресцирующего белка водорослей.

В результате проведенных исследований было выяснено, что наибольшую трансфекционную активность имеют ИПЭК поли-(2-(диметиламино)этил)метакрилата (PDMAEMA) с низкими молекулярными массами. Дальнейшие исследования позволят разработать новые подходы к решению актуальных проблем в вирусологии, молекулярной и клеточной биологии, генной инженерии, генной терапии.

Трансдукция (от лат. transductio -- перемещение) -- процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Общая (неспецифическая) трансдукция

Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10?5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.

Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется. Это явление носит название абортивной трансдукции.

Специфическая трансдукция

Наиболее хорошо изучена специфическая трансдукция на примере фага л. Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10?3--10?5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.

Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.

Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена -- собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой (HFT от англ. high frequency transduction).

Конъюгамция (от лат. conjugatio -- соединение), парасексуальный процесс -- однонаправленный перенос части генетического материала (плазмид, бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Дж. Ледербергом и Э. Тайтемом. Имеет большое значение в природе, поскольку способствует обмену полезными признаками при отсутствии истинного полового процесса. Из всех процессов горизонтального переноса генов конъюгация позволяет передавать наибольшее количество генетической информации.

Механизм

Для успешного установления контакта двух клеток в клетке-доноре должна присутствовать конъюгативная (половая, трансмиссивная) плазмида. Первой из них была открыта F-плазмида: эписома (способная встраиваться в бактериальную хромосому), длиной около 100 тыс. пар оснований. Плазмида несёт гены, кодирующие ряд функций. Одна из них -- образование половых пилей, отвечающих за приклепление к клетке-реципиенту.

Конъюгативные плазмиды также кодируют белки, противодействующие прикреплению пилей других бактерий к клеточной стенке данной. Поэтому клетки, уже содержащие трансмиссивные плазмиды, на несколько порядков реже выступают в роли реципиентов при конъюгации.

Плазмидой кодируется эндонуклеаза, разрезающая одну из нитей её ДНК в определённой точке (oriT). Затем разрезанная цепь раскручивается и 5"-концом переносится в клетку-реципиент. Выдвигалось предположение, что ДНК передаётся по каналам в половых пилях, но к настоящему времени показано, что перенос идёт через поры в клеточной стенке. В первом сегменте поступающей в клетку реципиента нити ДНК расположены антирестрикционные гены. Эти гены должны транскрибироваться в реципиенте сразу же после своего поступления туда, чтобы обеспечить накопление белков, блокирующих процесс разрушения ДНК рестриктазами. Наконец, переданная цепь замыкается в кольцо и на её основе восстанавливается двунитевая структура ДНК плазмиды. Весь процесс длится несколько минут.

Конъюгативная плазмида может встраиваться в хромосому путём гомологичной рекомбинации с участием IS-элементов. Конъюгация при этом идёт по тому же механизу, однако реципиенту передаётся не только плазмида, но и хромосомный материала донора. В этом случае процесс затягивается на часы, часто происходит разрыв передаваемой нити ДНК. Путём искусственного прекращения передачи ДНК в разное время и наблюдения за тем, какие гены были при этом переданы, была получена карта хромосомы кишечной палочки (E. coli) и показано её кольцевое строение.

При выщеплении из хромосомы плазмида может захватывать её фрагмент и переносить его с собой в другую клетку (аналогия с трансдукцией). Данный процесс носит название сексдукции.

Некоторые мелкие плазмиды, называемые мобилизуемыми, могут быть перенесены при конъюгации с помощью аппарата переноса «хелперной» трансмиссивной плазмиды. Для этого они должны содержать последовательности, аналогичные oriT конъюгативной плазмиды и распознаваемые её эндонуклеазами.

Рекомбинация у бактерий: трансформация, трансдукция, конъюгация.

Наименование параметра Значение
Тема статьи: Рекомбинация у бактерий: трансформация, трансдукция, конъюгация.
Рубрика (тематическая категория) Культура

Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот :

‣‣‣ у бактерий имеется несколько механизмов рекомбинаций;

‣‣‣ при рекомбинациях у бактерий образуется не зигота͵ как у эу­кариот, а мерозигота (несет полностью генетическую инфор­мацию реципиента и часть генетической информации донора в виде дополнения);

‣‣‣ у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.

Трансформация - это обмен генетической информацией у бакте­рий путем введения в бактериальную клетку-реципиент готового препарата ДНК (специально приготовленного или непосредст­венно выделœенного из клетки-до нора). Чаще всœего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клетка-реципиент должна находиться в определœенном физиологиче­ском состоянии (компетентности), ĸᴏᴛᴏᴩᴏᴇ достигается специ­альными методами обработки бактериальной популяции.

При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Трансдукция - обмен генетической информацией у бактерий пу­тем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов.

Трансдуцирующие фаги могут переносить 1 или более генов (признаков).

Трансдукиия бывает :

‣‣‣ специфической - переносится всœегда один и тот же ген;

‣‣‣ неспецифической - передаются разные гены.

Это связано с локализацией трансдуиируюших фагов в геноме до­нора :

‣‣‣ в случае специфической трансдукции они располагаются всœе­гда в одном месте хромосомы;

‣‣‣ при неспецифической их локализация непостоянна.

Конъюгация - обмен генетической информацией у бактерий пу­тем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть до­норской ДНК должна быть передана реципиенту.

Основываясь на прерывании конъюгации через определœенные промежутки времени, можно определить порядок расположе­ния генов на хромосоме бактерий - построить хромосомные карты бактерий (произвести картирование бактерий).

Донорской функцией обладают F + -клетки.

Рекомбинация у бактерий: трансформация, трансдукция, конъюгация. - понятие и виды. Классификация и особенности категории "Рекомбинация у бактерий: трансформация, трансдукция, конъюгация." 2017, 2018.

Прокариотам несвойственно половое размножение . Рекомбинация у них происходит в результате внутригеномных перестроек, заключающихся в изменении локализации генов в пределах хромосомы, или при проникновении в клетку реципиента части ДНК донора.

В результате рекомбинаций образуется только один рекомбинант, генотип которого представлен в основном генотипом реципиента с включенным в него фрагментом ДНК донора.

Генетические рекомбинации происходят при участии ряда ферментов в пределах отдельных генов или групп сцепленных генов. Существуют специальные гес-гены, детерминирующие рекомбинационную способность бактерий. Передача генетического материала (хромосомных генов) от одних бактерий к другим происходит путем трансформации, трансдукции и конъюгации. Передача плазмидных генов - путем трансдукции и конъюгации.

Трансформация - изменение одного типа клеток при действии активного начала из другого типа клеток. Феномен открыл Гриффит у Streptococcus pneumoniae (1928); позднее Эвери, Маклеод и Мак Карти (1944) выделили трансформирующее начало пневмококков в форме молекулы ДНК. Это и явилось первым прямым доказательством того, что носителем генетической информации является ДНК.

Погибшие бактерии постоянно высвобождают ДНК, которая может быть воспринята другими бактериями. Традиционно, любая чужеродная ДНК, попадающая в бактериальную клетку, расщепляется эндонуклеазами. При некоторых условиях такая ДНК интегрируется в геном бактерий и изменяет его. Встраивание плазмидной ДНК может менять вирулентность бактерий. В обмене генетической информацией трансформация играет незначительную роль.

Трансдукция - перенос фрагмента ДНК от одной клетки (донора) к другой (реципиенту) с помощью бактериофага. Явление открыл Ледерберг и Циндер (1952). Выделяют 3 типа трансдукции:

    неспецифическая (общая) - в клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов вместе с вирусной ДНК может проникнуть любой фрагмент бактериальной ДНК или плазмиды. В этом случае, фаг утрачивает часть своего генома, становиться дефектным и способен вызвать трансдукцию. При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены.

    специфическая характеризуется способностью фага переносить определенные гены от бактерии-донора к бактерии-реципиенту. Это связано с тем, что образование трансдуцирующего бактериофага происходит путем выщепления профага из бактериальной хромосомы вместе с генами, расположенными на хромосоме в клетке-донора рядом с профагом. При взаимодействии трансдуцирующих фагов клетками реципиентного штамма происходит включение гена бактерии-донора вместе с ДНК дефектного фага в хромосому бактерии-реципиента. Бактерии, лизогенированные дефектным фагом, невосприимчивы, как и все лизогенные клетки, к последующему заражению гомологичным вирулентным фагом.

    абортивная. Принесенный фагом фрагмент ДНК бактерии-донора не включается в хромосому бактерии-реципиента, а располагается в ее цитоплазме и может в таком виде функционировать. Во время деления бактериальной клетки трансдуцированный фрагмент ДНК-донора может передаваться только одной из двух дочерних клеток, т. е. наследоваться однолинейно и постепенно утрачиваться.

Конъюгация - перенос генетического материала их клетки-донора в клетку-реципиента при их скрещивании. Процесс конъюгации у бактерий впервые обнаружен Д. Ледербергом и Э. Тейтумом в 1946 г.Позднее выяснилось, что донорами генетического материала являются клетки, несущие F-плазмиду (половой фактор). При скрещивании F + с F" клеткой половой фактор передается независимо от хромосомы донора, если плазмида находится в автономном состоянии. При этом почти все реципиентные клетки получают F плазмиду и становятся F + клетками.

Этапы коньюгации:

    прикрепление клетки-донора к реципиентной клетке с помощью половых ворсинок (sex pili).

    образуется конъюгационный мостик, через который из клетки-донора в клетку-реципиент могут передаваться F-фактор и другие плазмиды, находящиеся в цитоплазме бактерии-донора в автономном состоянии.

    Интеграция F-плазмиды в состав бактериальной хромосомы приводит к разрыву одной из нитей ДНК, что обеспечивает возможность переноса в реципиентную клетку.

Постановка опыта трансдукции

Умеренный фаг, полученный при фильтровании из культуры E.coli в объеме 1 мл вносят в стерильную пробирку, затем в эту пробирку вносят 1 мл бульонной культуры E.coli, не способной расщеплять лактозу. Опытную пробирку выдерживают в термостате 40 мин. Затем делают высевы на сектора чашки со средой Эндо: умеренный фаг; E.coli lac-; из опытной пробирки.

Постановка опыта конъюгации

В отдельную стерильную пробирку вносят бульонную культуру донора и бульонную культуру реципиента в объеме по 1 мл. Опытную пробирку выдерживают в термостате 40 мин. Затем производят высевы культуры донора, реципиента и смесь донора с реципиентом на отдельные сектора минимальной питательной среды. Инкубируют 24 часа 37°С.