Раздражения

Система мононуклеарных фагоцитов включает. Реферат система мононуклеарных фагоцитов в организме человека

СИСТЕМА МОНОНУКЛЕАРНЫХ ФАГОЦИТОВ (син.: макрофагальная система, моноцитарно-макрофагальная система ) - система, объединяющая клетки, к-рые обладают способностью к эндоцитозу, имеют общее происхождение, морфологическое, цитохимическое и функциональное сходство. Концепция С. м. ф. впервые предложена в 1969 г. на конференции в Лейдене вместо устаревшей концепции ретикулоэндотелиальной системы (см. Ретикулоэндотелиальная система). На последующих конференциях в Лейдене (1973, 1978) представления о С. м. ф. продолжали совершенствоваться, и в настоящее время эта концепция принята большинством исследователей.

В основу концепции С. м. ф. положены современные представления об общности происхождения и кинетике этих клеток, их морфологическом, цитохимическом и функциональном сходстве. Мононуклеарные фагоциты присутствуют во всех тканях, но в нормальных условиях пролиферация их предшественников происходит только в костном мозге (см.). Наиболее рано распознаваемыми предшественниками ряда дифференцировки этих клеток являются монобласты - прямые «потомки» коммутированных стволовых клеток. В результате деления монобластов возникают промоноциты - прямые предшественники моноцитов (см. Кроветворение). Моноциты поступают в кровеносное русло, а затем мигрируют в различные ткани и полости тела, где становятся макрофагами (см.). Экспериментальные исследования подтвердили происхождение макрофагов самой разной локализации из циркулирующих в крови моноцитов. Было также показано, что деление макрофагов в тканях существенного значения для их обновления не имеет, тогда как ретикулярные клетки, дендритные ретикулярные клетки, фибробласты, эндотелиальные и мезотелиальные клетки не имеют предшественников в костном мозге, а обновляются путем локального деления в тканях. На схеме показаны происхождение клеток, входящих в систему мононуклеарных фагоцитов, и их локализация в органах и тканях, разновидности макрофагов в норме и при воспалении в зависимости от его характера (рис. 1).

Функция системы мононуклеарных фагоцитов контролируется сложными регуляторными механизмами, обеспечивающими поступление макрофагов в ткани в условиях нормы и патологии. Для описания функционального состояния макрофагов используются разнообразные определения (активированные, иммунные, вооруженные, индуцированные, стимулированные, экссудативные и т. д.). Активирование макрофагов происходит при культивировании in vitro, при фагоцитировании бактерий, контакте с антигеном, иммунными комплексами, бактериальными липополисахари-дами, полинуклеотидами и при взаимодействии с лимфокинами (см. Медиаторы клеточного иммунитета). В частности, in vitro показано участие в моноцитопоэзе (и гранулоцитопоэ-зе) гликопротеидов-регуляторов, или так наз. колониестимулирующих факторов, к-рые влияют на скорость дифференцировки предшественников макрофагов и относятся к аз-глобулинам с молекулярным весом (массой) от 13 000 до 93 000 . При различных патологических процессах, когда повышается потребность в моноцитах, продукция последних увеличивается за счет вступления в цикл непролиферирующих промоноцитов (в норме у человека активно пролиферирует только ок. 40% промоноцитов) и укорочения клеточного цикла, к-рый в норме составляет в среднем ок. 30 часов. В условиях воспаления макрофаги очага повреждения вырабатывают и освобождают в циркуляторное русло фактор, к-рый усиливает моноцитопоэз и, достигая костного мозга, стимулирует продукцию моноцитов. Этот фактор представляет собой белок с молекулярным весом (массой) ок. 20 000. После устранения повреждающего агента макрофаги начинают вырабатывать другой фактор - ингибитор моноцитопоэза с молекулярным весом (массой) ок. 50 000.

Активированные макрофаги характеризуются увеличенными размерами, усиленными фагоцитарной, переваривающей и бактерицидной функциями. В них повышаются активность кислых гидролаз, обменные процессы. Морфологически активированные макрофаги характеризуются увеличением числа и размеров лизосом, расширением комплекса Гольджи, увеличением складчатости плазматической мембраны. Активированные макрофаги с увеличенным числом рецепторов для IgG описаны у больных, страдающих саркоидозом (см.), болезнью Крона (см. Крона болезнь) и туберкулезом (см.).

Стимулятором, обладающим выраженным и направленным действием на макрофаги, является глюкан (сложный полисахарид из оболочек дрожжевых клеток Saccharomyces cerevisiae). Введение глюкана мышам приводит к резкому увеличению фагоцитарной активности макрофагов, стимуляции гуморального и клеточного иммунитета (см.). При этом ярко проявляется противоопухолевый эффект макрофагов. Параллельно отмечено накопление макрофагов в печени, селезенке и легких. Исследователи, применявшие глюкан, подчеркивают отсутствие у экспериментальных животных каких-либо побочных явлений.

Препараты, блокирующие, или элиминирующие, макрофаги, прежт де всего препятствуют их участию в различных иммунных реакциях. Так, частицы захваченного коллоидного угля приводят к потере способности макрофагов в процессе развития иммунного ответа перерабатывать антиген или подготавливать его для взаимодействия с соответствующими лимфоцитами. В основе иммунодепрессивного действия на макрофаги каррагинанов (высокомолекулярных полигалактоз) и частиц кварца лежит их избирательный токсический эффект. Эти же агенты используются для изучения участия макрофагов в тех или иных процессах.

Пути миграции моноцитов в ткани различны и не до конца изучены. В легких, напр., моноциты прямо дифференцируются в альвеолярные макрофаги, минуя фазу созревания в интерстиции. В брюшную полость часть макрофагов поступает из млечных пятен (см.), где они дифференцируются из моноцитов. Способность макрофагов к рециркуляции через кровеносные сосуды весьма ограничена, однако доказано, что они хмогут мигрировать в близлежащие лимф, узлы, где погибают.

Морфофизиология

Характерными качествами, присущими клеткам С. м. ф., в частности макрофагам (см.), являются способность к эндоци-тозу, включающему фагоцитоз (см.) и пиноцитоз (см.), адгезии, миграции. Макрофаги тканей и серозных полостей имеют более или менее сферическую форму, складчатую плазматическую мембрану (цитолемму) и характеризуются прежде всего присутствием в цитоплазме многочисленных лизосом (см.) и фаголизосом, или пищеварительных вакуолей (рис. 2). В сканирующем электронном микроскопе (см. Электронная микроскопия) хорошо видны поверхностные складки и гребни макрофагов (рис. 3). Обладая выраженной способностью к адгезии, в условиях культивирования макрофаги сильно распластываются на поверхности субстрата и приобретают уплощенную форму. При перемещении по субстрату они образуют множество полиморфных псевдоподий (см. Клетка), причем на сканограммах видны складчатый ведущий край, направленный в сторону перемещения клетки, и длинные отростки, фиксирующие клетку к субстрату. Наряду с этим макрофаги различной локализации, даже в пределах одного органа, напр. лимф, узла, отличаются как морфологически, так и функционально. Так, макрофаги светлых (герминативных) центров в отличие от фиксированных и свободных макрофагов синусов лимф, узлов не фагоцитируют антигены, но поглощают другие инородные частицы и лимфоциты. Их обычно выделяют как макрофаги с окрашивающимися включениями.

Внутриклеточный метаболизм мононуклеарных фагоцитов зависит от стадии дифференцировки, тканевой локализации, активирования и эндоцитоза. Основными источниками энергии для мононуклеарных фагоцитов являются гликолиз, гек-созомонофосфатный шунт и аэробный метаболизм. Исследования последних лет показали, что макрофаги являются активными секреторными клетками, к-рые освобождают в окружающую их среду ферменты, ингибиторы, факторы и компоненты комплемента (см.). Основным секреторным продуктом макрофагов является лизоцим (см.), к-рый вырабатывается и секретирует-ся с постоянной скоростью. В отличие от лизоцима нек-рые нейтральные протеиназы секретируются в основном активированными макрофагами. Среди них лучше всего изучены эластаза (см.), коллагеназа (см.) и активаторы плазминогена (см. Фибринолиз), участвующие в разрушении и перестройке тканей (напр., при резорбции кости, инволюции молочных желез и послеродовой инволюции матки). Как фиксированные, так и свободные макрофаги секретируют нек-рые факторы комплемента, такие, как С2, СЗ, С4, С5, фактор В, а также интерферон (см.).

Методы исследования

Традиционные морфол. методы, особенно на светооптическом и даже на электронно-микроскопическом уровне, часто бывают недостаточными для идентификации мононуклеарных фагоцитов. Даже при изучении изолированных клеток иногда трудно отличить моноцит от лимфоцита или предшественников моноцита (монобласта и промоноцита), от предшественников гранулоцитов (миелобластов и промиелоцитов). Кроме того, тканевые макрофаги часто путают с ретикулярными клетками, фибробластами, эндотелиальными и мезотелиаль-ными клетками, хотя разделение этих клеток имеет принципиальное значение, т. к. их происхождение и функция совершенно различны.

Лишь использование специфических маркеров в сочетании с электронной микроскопией позволяет надежно идентифицировать и оценить участие мононуклеарных фагоцитов в тех или иных процессах. Одним из наиболее надежных маркеров для идентификации мононуклеарных фагоцитов человека и животных является фермент эстераза (КФ 3. 1. 1. 1.), к-рый определяется гистохимически при использовании в качестве субстрата а-нафтилбути-рата или а-нафтилацетата. При этом окрашиваются почти все моноциты и макрофаги, хотя интенсивность гистохим. реакции может варьировать в зависимости от вида и функционального состояния организма, а также от условий культивирования клеток. В мононуклеарных фагоцитах фермент локализуется диффузно, тогда как в Т-лимфоцитах выявляется в виде одной-двух точечных гранул.

Другой надежный маркер - лизоцим (КФ 3. 2. 1. 17.) - фермент, секретируемый макрофагами, к-рый может быть выявлен с помощью им-мунофлюоресцентного метода с использованием антител к лизоциму (см. Иммунофлюоресценция).

Выявлять различные стадии дифференцировки мононуклеарных фагоцитов позволяет пероксидаза (см.). Гранулы, содержащие фермент, окрашиваются положительно только в монобластах, промоноцитах, моноцитах и макрофагах экссудата; резидентные (т. е. постоянно присутствующие в нормальных тканях) макрофаги не окрашиваются.

В качестве ферментов-маркеров мононуклеарных фагоцитов используются также 51-нуклеотидаза, (КФ 3. 1. 3. 5), лейцинаминопептидаза (КФ 3. 4. 11. 1.), фосфодиэстёраза I (КФ 3. 1. 4. 1.), локализующиеся в плазматической мембране. Активность этих ферментов определяют либо в гомогенатах клеток, либо цитохимически. Выявление Б^нук-леотидазы позволяет отличать нормальные (резидентные) макрофаги от активированных (активность этого фермента высока в первых и низка во вторых). Активность лейцин-аминопептидазы и фосфодиэстеразы, наоборот, возрастает по мере активирования макрофагов.

Компоненты комплемента, в частности СЗ, также могут являться маркером, поскольку этот белок синтезируется только моноцитами и макрофагами. Он может быть выявлен в цитоплазме с помощью иммуно-цитохимических методов; компоненты комплемента у разных видов животных различаются по антигенным свойствам.

Весьма характерно для мононуклеарных фагоцитов наличие иммунол. рецепторов для Fc-фрагмента JgG (см. Иммуноглобулины) и для компонента СЗ комплемента. Мононук-леарные фагоциты несут названные рецепторы на всех стадиях развития, но среди незрелых клеток число мононуклеарных фагоцитов с рецепторами ниже, чем среди зрелых (моноцитов и макрофагов). Мононуклеарных фагоциты обладают способностью к эндоцитозу. Поэтому поглощение опсонизированных бактерий или покрытых IgG эритроцитов (иммунный фагоцитоз) является важным критерием, позволяющим отнести клетку к С. м. ф. Однако поглощения покрытых комплементом эритроцитов не происходит, если мо-нонуклеарные фагоциты не были предварительно активированы. Кроме фагоцитоза, все мононуклеар-ные фагоциты характеризуются интенсивным пиноцитозом. В макрофагах преобладает макропиноцитоз, к-рый лежит в основе захвата всех растворов; везикулы, образующиеся в результате интернализации мембраны (впячивания участка мембраны внутрь клетки), транспортируют вещества и за пределы клетки. Пи-ноцитоз отмечен и у других клеток (напр., у фибробластов), но в более слабой степени. Нетоксические витальные красители и коллоидный уголь мало подходят для характеристики эндоцитозной активности мононуклеарных фагоцитов, поскольку поглощаются и другими типами клеток.

Для выявления специфических для мононуклеарных фагоцитов антигенов могут быть использованы антисыворотки, однако получение антител, специфичных для этих клеток, все еще представляет большие трудности, т. к. многие из антисывороток содержат антитела, перекрестно реагирующие с другими типами клеток.

На клеточном уровне о способности клеток к делению судят по включению меченого предшественника ДНК 3Н-тимидина или по содержанию ДНК в ядрах.

Роль системы мононуклеарных фагоцитов в физиологических и патологических процессах

Мононуклеарные фагоциты - полифункциональ-ные клетки, к-рые, обладая выраженной способностью к эндоцитозу, выполняют в организме защитную функцию, принимают участие в процессах воспаления, иммунных реакциях, обладают противоопухолевой активностью, участвуют в регуляции кроветворения и обмена веществ.

Защитная функция

В основе защитной функции мононуклеарных фагоцитов лежит их способность избирательно поглощать и разрушать различные чужеродные агенты. За ними закрепился термин «профессиональные фагоциты», поскольку поглощение (эндоцитоз) - их основная функция. Моноциты и макрофаги способны к направленному движению, определяемому специфическими хемотаксическими факторами. Регуляция этих факторов сложна; в сыворотке крови человека выявлены их ингибиторы и инактиваторы. In vivo хемотаксис (см. Таксисы) вызывается компонентами комплемента СЗ и С4, калликреином, компонентами фибринолиза, продуктами лимфоцитов - лимфокинами. Привлекаются макрофаги также веществами, освобождающимися из бактерий. Благодаря хемотаксису макрофаги мигрируют в очаги инфекции и воспаления. После фагоцитоза микроорганизмов происходит их умерщвление и переваривание. По мере продвижения фагоцитарных вакуолей внутрь клетки в них освобождаются вещества, находящиеся в лизосомах, способные гидролизировать белки, липиды и углеводы, входящие в состав микроорганизмов. Нек-рые из освобождаемых компонентов макрофагов, такие, как пероксида-за, лизоцим и др., обладают антимикробной активностью. Лизоцим является антибактериальным агентом и вне клеток. Среда в фаго-лизосомах становится кислой, что способствует проявлению оптимальной активности ферментов лизосом. Одновременно в фагоцитирующих клетках происходит резкое повышение метаболизма. Переваривание завершается в течение одного-двух часов. Активированные макрофаги подобно нейтрофилам освобождают в окружающую среду перекись водорода и анионы супероксида и с их помощью могут лизировать различные клетки-мишени. Макрофаги захватывают также вирусы, причем нек-рые из них поступают в клетку путем пиноцитоза. Основной функцией клеток Купфера печени является клиренс (очищение) крови от бактерий и вирусов. Старые или поврежденные эритроциты фагоцитируются макрофагами костного мозга, селезенки и печени, а затем подвергаются внутриклеточному перевариванию (эритрофагоцитоз).

Участие в воспалении

Повреждающие агенты (агенты-раздражители) различной природы вызывают в общем однотипную реакцию организма - воспаление (см.). Однократное кратковременное раздражение индуцирует миграцию нейт-рофилов и их скопление в зоне повреждения. Через 6 час. приток нейт-рофилов постепенно ослабевает, после чего начинается миграция макрофагов, к-рая продолжается примерно в течение Зсут., а затем снижается. Макрофаги в очаге острого воспаления образуются только из циркулирующих моноцитов. При подостром и хроническом воспалении макрофаги часто становятся доминирующими клетками, причем если острый воспалительный процесс переходит в хрон. форму, то наблюдаются местная пролиферация и селекция долгоживущих макрофагов, направленные на поддержание численности макрофагов в очаге воспаления.

От природы раздражающего агента зависит сменяемость макрофагов в очаге повреждения. В случае устранения провоцирующего агента они исчезают (гибнут или мигрируют в лимф. узлы). При сохранении действия возбудителя воспаления макрофагальный инфильтрат остается. Если в процессе ответной реакции, направленной на устранение токсического и устойчивого раздражителя (напр., двуокиси кремния, бактерий), происходит потеря большого числа макрофагов, то формируется гранулема (см.) с высоким уровнем сменяемости клеток. Если раздражитель устойчив к действию макрофагов и в то же время нетоксичен, возникает гранулема с низким уровнем сменяемости клеток; в такой гранулеме преобладают долгоживущие макрофаги. Во многих специфических гранулемах (напр., при туберкулезе, саркоидо-зе, лепре) мононуклеарные фагоциты превращаются в эпителиоидные клетки (рис. 4) со слабой фагоцитарной активностью, но сильно выраженным пиноцитозом и способностью к секреции. В очагах хрон. воспаления мононуклеарные фагоциты при слиянии дают начало так наз. макрофагальным поликарионам, или многоядерным гигантским клеткам инородных тел (рис. 5) и клеткам типа Пирогова - Лангханса (см. Гигантские клетки). Последние обычно сохраняют очень слабую фагоцитарную активность, напр, по отношению к бактериям туберкулеза. В хрон. гранулемах, вызванных частицами кварца, происходит непрерывная гибель макрофагов в результате разрушения лизосом и са-мопереваривания клеток. При этом из клеток освобождается фиброгенный фактор, стимулирующий синтез коллагена фибробластами. Кроме того, активированные макрофаги вырабатывают фибронектин-гликопротеид с высокой молекулярной массой, являющийся, в частности, хемо-аттрактантом (привлекающим агентом) для фибробластов.

Участие в иммунных процессах

Клетки С. м. ф. принимают участие в иммунных процессах. Первичное взаимодействие макрофага с антигеном (см.) - непременное условие развития направленного и максимального иммунного ответа (см. Иммунитет). В результате такого взаимодействия антиген поглощается и перерабатывается внутри макрофага (процессинг), после чего секретируется в иммуно-генной форме, оказываясь фиксированным на его плазматической мембране. Иммунная стимуляция лимфоцитов происходит в результате их непосредственного контакта с макрофагами. В дальнейшем иммунная реакция протекает с участием В-лимфоцитов, Т-лимфоцитов и макрофагов (см. Иммунокомпетентные клетки).

Противоопухолевая активность

Макрофаги обладают противоопухолевой активностью и проявляют специфические и неспецифические цитотоксиче-ские свойства благодаря присутствию цитофильных антител или факторов, продуцируемых сенсибилизированными Т-лимфоцитами. Разрушение клеток-мишеней обычно оценивается по освобождению связанного с ними радиоактивного хрома после ицкубации с цито-токсическими макрофагами - эффекторами. Проявляемая макрофагами цитотоксичность имеет отношение к ряду иммунных реакций, таких, как отторжение аллотрансплантатов (см. Иммунитет трансплантационный) и противоопухолевый иммунитет (см. Иммунитет противоопухолевый) .

Цитотоксическими свойствами обладают две категории макрофагов- эффекторов: иммунные, или так наз. вооруженные, макрофаги, активно разрушающие специфические клет-ки-мишени, и неспецифические активированные макрофаги с менее избирательными свойствами. Цитотоксичность иммунных макрофагов по отношению к опухолевым клеткам продемонстрирована в опытах in vitro, в к-рых использовали макрофаги от мышей, иммунизированных син-генными (генетически идентичными) опухолевыми клетками. В то же время макрофаги не были способны разрушать опухолевые клетки, если были получены от мышей, иммунизированных аллогенными опухолевыми клетками (взятыми от другого животного того же вида). Специфическая подготовка (вооружение) макрофагов зависит от продукции специфического фактора сенсибилизированными Т-лимфоцитами. Точный механизм деструкции клеток вооруженными макрофагами пока неизвестен. Для лизиса опухолевых клеток необходим контакт между ними и макрофагами. Процесс разрушения опухолевых клеток включает в себя остановку их пролиферации и лизис. После специфической иммунной реакции между макрофагом и опухолевой клеткой-мишенью макрофаг может потерять специфичность. В этом случае он превращается в неспецифическую клетку-эффектор. Неспецифическая цитотоксичность может наблюдаться после инкубации макрофагов с различными веществами: эндотоксином, двуцепочечной РНК и адъювантом Фрейнда (см. Адъюванты).

Участие в регуляции кроветворения

Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения (см.). В красном костном мозге, селезенке, печени и желточном мешке эмбриона описан так наз. центральный макрофаг, окруженный одним-двумя рядами эрит-робластов. Тонкие цитоплазматические отростки центрального макрофага проникают между эрит-робластами, а иногда их полностью окружают. Центральный макрофаг всегда становится центром эритропоэза, вместе с прилежащими к нему эритробластами он получил название эритробластического островка, к-рый рассматривается как функционально-анатомическая единица очагов эритропоэза. Центральный макрофаг поглощает ядра эрит-робластов, переваривает старые эритроциты и переносит накапливаемое железо в развивающиеся эритробласты. Нек-рые продукты распада поглощенных ядер могут реутилизироваться для нового синтеза ДНК кроветворными клетками. Центральный макрофаг отличается высокой устойчивостью к воздействию ионизирующего облучения и гипоксии. Центральные макрофаги являются стромальны-ми элементами и выполняют регулирующую функцию при созревании эритроидных клеток-предшественни-ков, напр. при фенилгидразино-вой анемии (см. Анемия, анемия экспериментальная). Появление новых интраваскулярных эритроб-ластических островков в костном мозге, печени и селезенке всегда связано с наличием фагоцитирующих макрофагов, дифференцирующихся из циркулирующих в крови моноцитов.

Клетки Купфера печени участвуют в регуляции эритропоэза посредством выработки эритропоэтина (см.).

С помощью агаровых культур установлено, что моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов, а также пролиферацию макрофагов, в результате чего возникают дискретные клеточные колонии. С другой стороны, они могут оказывать ингибирующий эффект на рост колоний, синтезируя простагландин Е (см. Простагландины) .

В мозговом веществе и внутренней зоне коркового вещества долек тимуса и тимусзависимых зонах всех периферических лимф, органов (лимф, узлов, селезенки, скоплениях лимф, ткани жел.-киш. тракта) сравнительно недавно были описаны так наз. интердигитирующие клетки. Они характеризуются неправильной формой ядер и наличием в цитоплазме тубуловезикулярных структур. Их плазматическая мембрана образует многочисленные выпячивания, проникающие между аналогичными образованиями соседних клеток того же типа или лимфоцитов. Эти клетки морфологически очень сходны с макрофагами, а также клетками Лангерганса, локализующимися в эпидермисе (см. Кожа). В настоящее время большинство исследователей склоняется к тому, что интердигитирующие клетки - специфические стромальные элементы тимусзависимых зон, ответственные за миграцию и дифференцировку Т-лим-фоцитов.

Макрофаги участвуют в синтезе веществ, модулирующих пролиферацию и дифференцировку лимфоидных клеток. К ним относится фактор, активирующий лимфоциты и обеспечивающий митогенный (бластогенный) ответ Т-лимфоцитов на лектин и антигены гистосовместимости (см. Бластотрансформация лимфоцитов), а также факторы, усиливающие хелперную функцию Т-лимфоцитов (усиление антитело-образования в В-лимфоцитах). С помощью клонирования В-лимфоцитов показано, что макрофаги вырабатывают диффузный фактор, способствующий образованию колоний субпопуляцией В-лимфоцитов. Избыточное число макрофагов, наоборот, приводит к подавлению роста колоний в результате выработки простаг-ландина Е.

Обменная функция

Обменным процессом, в к-ром достоверно доказана роль макрофагов, является обмен железа. В результате эритрофагоцитоза в макрофагах костного мозга и селезенки происходит накопление железа в виде специфических игольчатых или палочковидных включений ферритина и гемосидерина. Ферритин затем поступает путем пиноцитоза (см.) в прилежащие эритробласты. При фе-нилгидразиновой анемии в макрофагах наблюдается увеличение палочковидных включений, содержащих ферритин.

Библиография: Mononuclear phagocytes, ed. by R. van Furth, Oxford - Edinburgh, 1970; Mononuclear phagocytes, In immunity, infection and pathology, ed. by R. van Furth, Oxford a. o., 1975; Mononuclear phagocytes, Functional aspects, ed. by R. van Furth, pt 1-2, Hague a. o., 1980.

H. Г. Хрущов, В. И. Старостин.

Рис. 7.1. Мононуклеарная фагоцитарная система

Мононуклеарная фагоцитарная (МФ) система - это совокупность клеток, происходящих из моноцитов, обладающих фагоцитарной активностью. Кроме того, к фагоцитирующим клеткам относятся полинуклеарные фагоциты (ПМЯЛ) - нейтрофилы, эозинофилы, базофилы, микроглия (на рис. затушеваны).

Важную роль в механизмах неспецифичкской защиты играют также ретикулярные, эндотелиальные клетки, которые не выполняют фагоцитарной функции, а поддерживают целостность лимфоидной ткани и кровеносных сосудов (Эндотелиальные клетки выстилают сосуды, ретикурные является основой кроветворных органов, образуются из мезенхимы).

Фагоцит, описанный И.И. Мечниковым, состоит из 7 следующих фаз:

1) Хемотаксис - движение клеток в направлении градиента молекул, выделенных микроорганизмами.

Хемотаксические факторы упорядочивают движения фагоцитов. Они воздействуют на специфические рецепторы на плазмолемме фагоцитов стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию адгезивных молекул. Вследствие этого формируются псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток.

2) Адгезия (прикрепление) клетки к объекту фагоцитоза Происходит при взаимодействии её рецепторного аппарата с молекулами на поверхности бактерии. Протекает в две стадии: -обратимая и непрочная -необратимая, прочная.

3) Захват бактерии клетки с формированием фагосомы Псевдоподии охватывают бактерию, заключая ее в мембранный пузырек - фагосому. Если бактерия инкапсулирована, то на нее садятся IgG или СЗВ. В таком случае бактерия опсонизирована.

4) Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы Содержимое гранул выливается в просвет фаголизосомы (рН кислая).

5) Повреждение и внутриклеточное переваривание бактерии Гибель бактерии наступает вследствие действия на нее антимикробных веществ, далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается действием токсичных реактивных биоокислителей (перикисью водорода, молекул. Кислородом, супероксидными радикалами, гипохлоритом...)

Гидрофобность



Рис. 7.2. Схема фаго

Рис. 7.2. Схема фагацитоза

Фагоцитоз, являясь механизмом неспецифической защиты (фагоцитироваться могут любые инородные частицы независимо от наличия иммунизации), в то же время способствует иммунологическим механизмам защиты. Это связано, во-первых, с тем, что поглощая макромолекулы и расщепляя их, фагоцит как бы раскрывает структурные части молекул, отличающиеся чужеродностью. Во-вторых, фагоцитоз в условиях иммунологической защиты протекает быстрее и эффективнее. Таким образом, явление фагоцитоза занимает промежуточное место между механизмами специфической и неспецифической защиты. Это еще раз подчеркивает условность деления механизмов защиты клеточного гомеостаза на специфические и неспецифические.

Нефагоцитарный механизм разрушения микробов характерен для ситуаций, когда микроорганизмы имеют столь большие размеры, что клетки не могут их поглощать. В таких случаях фагоциты скапливаются вокруг бактерии и выбрасывают содержимое своих гранул, уничтожая микроб большими концентрациями антимикробных веществ.

Воспалительная реакциия также относится к клеточным неспецифическим реакциям. Она является эволюционно выработанным процессом защиты внутренней среды от проникновения чужеродных макромолекул, поскольку внедрившиеся в ткань чужеродные начала, например, микроорганизмы, фиксируются в месте внедрения, разрушаются и даже удаляются из ткани во внешнюю среду с жидкой средой очага воспаления - экссудатом. Клеточные элементы как тканевого происхождения, так и выходящие в очаг из крови (лейкоциты), образуют вокруг места внедрения своеобразный защитный вал, препятствующий распространению чужеродных частиц по внутренней среде. В очаге воспаления особенно эффективно протекает процесс фагоцитоза



Гуморальные факторы внутренней среды, обеспечивающие механизмы неспецифической защиты, представлены пропердиновой системой и системой комплемента, осуществляющие лизис чужеродных клеток. При этом система комплемента, хотя и может активироваться неиммунологическим путем, обычно вовлекается в иммунологические процессы и поэтому скорее должна относиться к специфическим механизмам защиты.

Рис.7.3. Система комплемента.

Пропердиновая система реализует свой защитный эффект независимо от иммунных реакций.

К числу гуморальных факторов неспецифической защиты относят также содержащиеся в плазме крови и тканевой жидкости лейкин ы, плакины, бетализины, л и з о ц м и т.д.. Лейкины выделяются лейкоцитами, плакины - тромбоцитами крови, они оказывают отчетливое бактериолитическое действие. Еще большим литическим эффектом на стафилококки и анаэробные микроорганизмы обладают бета-лизины плазмы крови. Содержание и активность этих гуморальных факторов не меняются при иммунизации, что дает основание считать их неспецифическими факторами защиты. К числу последних следует также отнести и довольно большой спектр веществ тканевой жидкости, обладающих способностью подавлять ферментативную активность микроорганизмов и жизнедеятельность вирусов. Это ингибиторы гиалуронидазы, фосфолипаз, коллагеназы, плазмина и интерферон лейкоцитов.

В ходе развития мыши стволовая кроветворная клетка мезенхимального происхождения возникает в желточном мешке и на второй неделе онтогенеза мигрирует в эмбриональную печень, где возникают незрелые мононуклеарные фагоциты. На третьей неделе развития кроветворение начинается в костном мозге. Хотя фагоциты есть во всех тканях, в нормальных условиях пролиферирующие фагоциты можно обнаружить только в костном мозге. Наиболее незрелая клетка этого ряда, представляющая собой, по-видимому, прямой потомок коммитированной стволовой клетки,- это монобласт; при делении этой клетки образуются промоноциты - непосредственные предшественники моноцитов. Моноциты остаются в костном мозге очень короткое время, а затем попадают в кровоток, откуда проникают в различные ткани, чтобы превратиться в макрофаги. С помощью костномозговых химер и экспериментов по парабиозу было прямо показано, что в нормальном состоянии макрофаги, локализующиеся в разных тканях организма, образуются из циркулирующих в крови моноцитов. В целом в нормальном состоянии пролиферация макрофагов в тканях не играет никакого значения для обновления этой популяции клеток. Однако во многих исследованиях in vivo в экссудатах тканей обнаруживается небольшой процент (2-5%) делящихся клеток. Таким образом, вопрос о самообновлении макрофагов в тканях не вполне ясен.

Созревание в ряду мононуклеары - фагоциты характеризуется появлением набора мембранных маркеров, новых рецепторов и функций. Присутствие или отсутствие одного или многих таких маркеров позволяет разработать критерии для характеристики мононуклеарных фагоцитов.

Свойства двух различных доменов Т-супрессорных молекул

Моноциты- макрофаги Клетки Лан- герганса Вуалевые клетки, ОКР Дендритные клетки
Поверхностные маркеры
Рецепторы Fc
Рецепторы СЗ
Iа-антигены
+
+
+
+
+
+
?
?
+
-
-
+
Ферменты-маркеры
Неспецифическая эстераза
AT Раза
Пероксидаза
Фагоцитоз (латекс)
Пиноцитоз
Гранула Бирбека
Презентация антигена
Костномозговое происхождение
+
+
+
+
+
-
+
+
+
+
-
-
+
+
+
+
?
+
+
?
+
иногда
?
?
-
-
-
-
+
-
+
+

Без использования этих маркеров на основании только морфологических критериев было бы крайне трудно различать между собой моноциты, лимфоциты, предшественники моноцитов (монобласты и промоноциты) и предшественники гранулоцитов (миелобласты и промиелоциты).

Одним из наиболее надежных маркеров для идентификации мононуклеар- ных фагоцитов у человека и животных служит фермент неспецифическая эстера- за. При использовании в качестве субстрата а-нафтилбутирата или а-нафтилацетата все моноциты и макрофаги дают положительную реакцию, хотя ее интенсивность зависит от вида животного, стадии развития, а также условий культивирования и функционального состояния клеток. В макрофагах неспецифическая эстераза расположена диффузно в цитоплазме. Иногда этот фермент обнаруживается в Т-клетках, но там он выявляется в виде положительных точек в гранулах. Фагоциты содержат также другой фермент - лизоцим, который легко обнаруживается с помощью флуоресцентно-меченных антител. Третий ферментативный маркер фагоцитов - пероксидаза. Она особенно удобна для идентификации различных стадий развития фагоцитов, так как внутриклеточная локализация пероксидазы в монобластах, промоноцитах, моноцитах и макрофагах различна. Гранулы, содержащие пероксидазу, обнаруживаются только в монобластах, промоноцитах, моноцитах и макрофагах экссудата - в неактивированных макрофагах методом световой микроскопии пероксидаза не выявляется. Поверхностный фермент 5"-нуклеотидаза также удобен для различения покоящихся и активированных макрофагов: его активность высока в покоящихся клетках и крайне мала в активированных. Активность двух других поверхностных ферментов лейцинаминопептидазы и щелочной фосфодиэстеразы I, наоборот, при активации увеличивается.

Мононуклеарные фагоциты имеют рецепторы к Fc-району IgG и к третьему компоненту комплемента (СЗ), а также обладают такой функциональной характеристикой, как активный эндоцитоз. Считается, что клетку можно относить к мононуклеарным фагоцитам, лишь проверив ее способность к иммунному фагоцитозу: поглощению опсонизированных бактерий или эритроцитов, покрытых IgG. Способность к поглощению эритроцитов, покрытых комплементом, приобретается только при активации мононуклеарных фагоцитов. Все мононуклеарные фагоциты способны к пиноцитозу, причем различают две формы пиноцитоза. При макропиноцитозе возникают выросты поверхностной мембраны клетки, в результате чего образуются относительно крупные пузырьки (0,1-1 мкм). В макрофагах этот механизм доминирует, и с его помощью обеспечиваются почти все поглощение растворенных веществ и интериоризация мембраны. Возможно, эти пузырьки играют роль также в транспорте веществ из клетки наружу. Для микропиноцитоза характерно образование мельчайших впячиваний плазматической мембраны (размер пузырьков меньше 0,1 мкм). Поглощение растворенных молекул в пузырьках называют микропиноцитозом в жидкой фазе, а поглощение молекул, прикрепившихся к клеточной поверхности с помощью неспецифических рецепторов,- поверхностным микропиноцитозом. Последний сопровождается образованием окаймленных пузырьков.

В последние пять лет стали доступны моноклональные антитела, что дает возможность идентифицировать члены дифференцировочного ряда моноциты - макрофаги. Эти маркеры моноцитов-макрофагов очень удобны для определения числа макрофагов в суспензии клеток, избирательного удаления макрофагов с помощью комплементзависимого лизиса или флуоресцентного сортера клеток (ФАКС), идентификации клеток-предшественников макрофагов, имеющих набор общих антигенов, а также для диагностики опухолей ретикулоэндотелиального происхождения, относящихся к ряду макрофагов.

Одним из первых реагентов, узнающих поверхностный антиген макрофагов, были крысиные антимышиные моноклональные антитела М1/70. Иммунофлуоресцентный анализ с помощью клеточного сортировщика (ФАКС) показал, что антиген (МАС-1), узнаваемый этими антителами, в большом количестве экспрессируется перитонеальными макрофагами, активированными тиогликолятом, и в несколько меньшем количестве моноцитами и гранулоцитами периферической крови (8% клеток селезенки и 50% клеток костного мозга). МАС-1 обнаруживался также на поверхности мышиных природных киллеров, но отсутствовал у тимоцитов, клеток периферических лимфоузлов и клеток В- и Т-лимфоидных линий. Иммунопреципитация меченных 1251 белков поверхности макрофагов показала, что МАС-1 содержит полипептиды с молекулярной массой 170 и 95 кДа. MI/70 перекрестно реагировали с антигеном, экспрессируемым человеческими моноцитами крови, и в меньшей степени гранулоцитами и природными киллерами. МАС-1 представляет собой удобный маркер для различения макрофагов и лимфоцитов, поскольку его экспрессия не зависит от дифференцировочных сигналов, воспринимаемых макрофагами. 0§, например, экспрессируется более чем 86% неактивированных перитонеаль- ных макрофагов, так же как и макрофагами, активированными тиогликолятом, конканавалином А (Кон А), липополисахаридом (ЛПС), Listeria monocytogenes или пептоном; во всех случаях популяции макрофагов экспрессируют одинаковое количество МАС-1 на клетку.

Два других структурно отличных антигена макрофагов, МАС-2 и 54-2, по- разному экспрессируются разными популяциями макрофагов. МАС-2 в изобилии выявляется на поверхности макрофагов, активированных тиогликолятом, но не на макрофагах, ничем не активированных или активированных Кон А, ЛПС или Listeria. Антиген 54-2 экспрессируется макрофагами, активированными тиогликолятом, макрофагами культивируемого костного мозга, тучными клетками, но не «оседлыми» перитонеальными макрофагами или моноцитами. Присутствие этого антигена на поверхности макрофагов, активированных другими агентами, не изучалось.

Большое количество мышиных моноклональных антител, реагирующих с неполиморфными антигенами клеток ряда моноцитов-макрофагов, было получено при иммунизации человеческими тканями. Некоторые антигены выявляются у большинства моноцитов, изолированных из периферической крови, в то время как другие характерны для небольших, по-видимому функционально различных, популяций. Многие антитела выявляют антигены, общие для моноцитов и других элементов периферической крови: гранулоцитов, Т-лимфо-цитов, тромбоцитов и природных киллеров.

В заключение следует отметить, что пока нет четкого критерия, определяющего, сколько клеток в данной популяции должны быть положительными по данному маркеру, чтобы считать эту популяцию мононуклеарными фагоцитами. Ни один из используемых сейчас маркеров, за исключением разве что некоторых моноклональных антител, не выявляется у 100% клеток. Как указывалось выше, необходимо учитывать стадию клеточной дифференцировки, а также уровень активации. В незрелых клетках некоторые характеристики могут быть выражены слабо или совсем отсутствовать, у активированных клеток эти же свойства могут появляться, усиливаться после активации или, наоборот, исчезать. Моноклональные антитела позволяют идентифицировать антигены, различающиеся у разных членов ряда моноциты - макрофаги. По-видимому, макрофаги, как и лимфоциты, можно подразделять на субпопуляции, различные в антигенном и функциональном отношениях.

Клетка-предшественница - клетка, находящаяся на низком уровне дифференцировки, но уже коммитированная к развитию в клетки определенной линии.

Аксиомой современной теории онкогенеза является положение, что клеткой-предшественницей стволовой злокачественной клетки является нормальная пролиферирующая соматическая клетка. Однако какая соматическая клетка явилась клеткой-предшественницей для злокачественной клетки, данной конкретной солидной опухоли - не известно.

Достоверно доказаны очень важные и никем неоспоримые утверждения:

Злокачественные клетки имеют больше сходства между собой, чем нормальные клетки между собой;

Злокачественные клетки имеют меньше различий между собой, чем различия между злокачественными клетками и нормальными клетками;

Нормальные клетки имеют меньше различий между собой, чем различия между нормальными клетками и злокачественными клетками;

Основные принципы «зарождения» стволовой злокачественной клетки, роста злокачественного очага и развития злокачественного процесса различных органов и тканей совершенно идентичны.

На этом основании можно говорить о злокачественных клетках, как об отдельной группе клеток, имеющих общее происхождение, а в совокупности со стромой, даже как об отдельной ткани в организме-носителе. В таком случае должна быть конкретная клетка, претендующая на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

При анализе всех клеток организма человека необходимо выбрать, прежде всего, те клетки, которые имеют следующие основные свойства:

1. Являются соматическими пролиферирующими клетками с продолжительным жизненным циклом (месяцы, годы).

2. Обладают автономностью: умеют свободно перемещаться по всему организму-носителю, проникать и мигрировать в органах и тканях.

3. Способны влиять на различные жизненно важные процессы: гемопоэз, гомеостаз, иммунитет, пролиферацию, созревание и дифференцировку клеток и др.

Клетками, обладающими вышеуказанными свойствами, в организме человека являются только клетки крови, из них:

Эритроциты, тромбоциты и лейкоциты - это тупиковый вариант с коротким сроком жизни (эритроциты 100-120 суток, тромбоциты около 7-10 суток, нейтрофилы менее 6-8 часов), к тому же, имеют специфические черты и достаточно ограниченные функции, поэтому не могут претендовать на роль «общего начала»;

Лимфоциты - относятся к Мононуклеарной фракции системы крови, имеют тропность к лимфоидной ткани и, как известно, унипотентные и полипотентные стволовые клетки лимфоцитопоэза являются клетками-предшественниками стволовых злокачественных клеток гемобластозов. Зрелые лимфоциты при воздействии на них специфических антигенов вновь способны трансформироваться в бластные клетки. Можно сказать однозначно, что лимфоциты прямо или косвенно участвуют в «зарождении» первичной стволовой злокачественной клетки, а также росте и развитии злокачественного процесса;

Моноциты - относятся к Мононуклеарной фракции системы крови - прослеживают свое начало от полипотентной клетки-предшественницы родоначальнице миелопоэза с последующим развитием в Моноцитарный росток (П класс), который включает в себя достаточно большое количество клеток различной потентности (полипотентные, унипотентные) и местоположения (костный мозг, сосудистое русло, ткани). Поэтому все клетки, относящиеся к Моноцитарному ростку удобнее называть Мононуклеарная фракция или Мононуклеары. С учетом особенностей Мононуклеар является наиболее вероятным кандидатом на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

Характеристика и возможности Мононуклеаров (Моноцитарный росток):

1. Морфологически недифференцируемые и дифференцируемые Мононуклеары подразделяются на три основные группы:

Костномозговые: полипотентная клетка-предшественница родоначальница миелопоэза с последующим развитием в Моноцитарный росток, унипотентная клетка-предшественница родоначальница Моноцитов, монобласт, промоноцит, моноцит;

Периферической крови: промоноцит, моноцит;

Тканевые: промоноцит, моноцит, макрофагальный бласт, промакрофаг, макрофаг.

Промоноцит и Моноцит присутствуют во всех трех группах клеток и являются промежуточным вариантом развития от костномозговой полипотентной клетки-предшественницы родоначальнице миелопоэза с последующим развитием в Моноцитарный росток (П класс) до органо- и тканеспецифического Макрофага, как конечного варианта развития.

2. Кроветворение в красном костном мозге, это единственный функционирующий очаг интенсивной пролиферации, который сохранился с эмбрионального периода развития и функционирует у взрослого человека.

3. Мононуклеары являются представителями клеток иммунокомпетентной системы и одновременно играют решающую роль в регуляции нормального гемопоэза. Мононуклеары могут ингибировать гемопоэз с помощью межклеточных взаимодействий и посредством выделения различных иммунных и не иммунных гуморальных факторов.

4. Образование клеток Моноцитарного ростка может происходить на любом этапе дифференциации от полипотентной стволовой кроветворной клетки до промиелоцита. Отличаются ли друг от друга Моноциты и Макрофаги, образовавшиеся из различных субпопуляций и каковы их специфические функции, пока не ясно.

5. Костномозговые Мононуклеары способны выходить из костного мозга в периферическую кровь, циркулировать в периферической крови по всему организму, проникать из кровеносного русла в любые органы и ткани и мигрировать в них - перемещаться в межклеточном пространстве.

6. Мононуклеар периферической крови в нормальных условиях созревает, перед тем как проникнуть в ткани, но при воспалении сроки пребывания его в периферической крови значительно сокращены, поэтому в ткани проникают его не зрелые формы, способные к активной пролиферации.

7. Тканевые Мононуклеары, это единственные клетки в организме человека, которые в нормальных условиях могут трансформироваться в другую бластную клетку - макрофаальный бласт с последующей дифференцировкой в Макрофаг.

8. Мононуклеар периферической крови, попадая в ткани, не обязательно трансформируется в Макрофаг, он может превратиться и в клетки микроокружения, например, в эпителиоидную клетку (мезенхимально-эпителиальный переход).

9. Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков кроветворения, поэтому изначально Мононуклеары характеризуются независимостью поведения - автономностью.

10. Мононуклеары сохраняют способность к делению на всех этапах своего развития и имеют возможность трансформироваться в первичную стволовую злокачественную клетку.

11. Злокачественные клетки, подобно Мононуклеарам, обладают многими активными свойствами: влияют на пролиферацию, дифференцировку и функциональную активность различных клеток; выработку факторов роста; размножение в геле без подложки; сниженную адгезию; пониженное контактное торможение; влияние на гемопоэз; влияние на свертывающую систему крови; влияние на клеточный и гуморальный иммунитет и др.

Таким образом, тканевые Мононуклеары (Промоноцит и Моноцит), вполне могут претендовать на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

1218 0

Макрофаги и моноциты относятся к так называемым профессиональным антигенпрезентирующим клеткам и, согласно современным представлениям, объединены в систему мононуклеарных фагоцитов, в которую также входят монобласты и промоноциты.

Подобно нейтрофилам они участвуют в обеспечении первой линии защиты против различных чужеродных воздействий.

Наряду со своими основными функциями - представление антигена, фагоцитоз и цитотоксичность - эти клетки осуществляют и различные регуляторные влияния. Современные представления о мононуклеарных фагоцитах свидетельствуют об их участии как во врожденном, так и приобретенном иммунитете.

В отличие от других клеток, обладающих выраженной способностью к фагоцитозу (нейтрофилы, тучные клетки, базофилы, эозинофилы), как моноциты периферической крови, так и тканевые макрофаги являются предметом интенсивного изучения, что нашло отражение во множестве публикаций. Не осталось в стороне и изучение роли мононуклеарных фагоцитов при опухолевом процессе, что способствовало накоплению множества данных, расширяющих информацию по этому вопросу.

Характеристика макрофагов

Сегодня известно, что роль мононуклеарных фагоцитов проявляется не только в фагоцитировании и презентации антигена - функциях, которые наиболее изучены, но и регуляторными влияниями, которые они оказывают на функции других клеток, что в целом определяет разностороннюю форму участия моноцитов и макрофагов в поддержании как иммунологического, так и тканевого гомеостаза.

Характеристика мононуклеарных фагоцитов как антигенпрезентирующих клеток была дана в первой части монографии. В связи с этим нам представляется целесообразным ограничить изложение данных этой главы, во-первых, сведениями, которые отражены в литературе последних лет, а во-вторых, теми, которые могут иметь значение для понимания их роли в опухолевом процессе.

Макрофаги - долгоживущая популяция клеток, их максимальное количество находится в соединительной и лимфоидной тканях, особенно ассоциированных со слизистой оболочкой. Как известно, своеобразным аналогом макрофагов в печени являются клетки Купфера, которые фагоцитируют, осуществляют процессинг и представление различных антигенов, а в мозгу - клетки микроглии и астроциты.

Контроль созревания моноцитов в костном мозгу осуществляется такими цитокинами, как IL-3, GM-CSF, M-CSF, IFNa/в; избирательным фактором роста мононуклеарных фагоцитов является M-CSF.

Известно, что моноцитопоэз усиливается провоспалительными цитокинами макрофагов по принципу обратной связи: после дифференцировки моноцитов в макрофаги последние начинают продуцировать цитокины, которые, в свою очередь, усиливают моноцитопоэз.

На различных его стадиях превалирующая роль принадлежит различным цитокинам, однако в конечном счете основными в этом процессе являются IL-3, GM-CSF, M-CSF, IL-9, IL-11, IFNy, IL-4. Моноциты могут быть прямыми предшественниками дендритных клеток in vivo, которые стали известны как CD8a+дендритные клетки (ДК) и могут осуществлять перекрестную презентацию антигена CD8+ Т-лимфоцитам.

Поверхностная мембрана макрофагов в высшей степени мозаична, так как формируется большим количеством различных соединений (белками, углеводами, липидами), ее наружная и внутренняя поверхности связаны и характеризуются способностью быстро и постоянно синтезировать вещества, которые ее формируют, что обеспечивает надежность реализации мононуклеарными фагоцитами их важнейших функций (фагоцитоза, цитотоксичности и др.). Такая мобильность, очевидно, является результатом сложного эволюционного пути, который прошли фагоцитирующие клетки.

Поверхность мембраны мононуклеарных фагоцитов изобилует различными рецепторами, из которых наиболее разносторонне изучены FcR для иммуноглобулинов, а также рецепторы к цитокинам, гормонам, различным фракциям комплемента. Интерес к изучению рецептора к Fc-фрагменту иммуноглобулина обусловлен тем, что эти рецепторы играют одну из главных ролей в осуществлении практически всех функций фагоцитирующих клеток.

Известны три типа рецепторов для иммуноглобулинов, которые были идентифицированы при изучении макрофагов мышей:

1) высокоаффинный рецептор для IgG - FcyRI (CD64), обладающий способностью связываться с мономерным агрегированным IgG, а также входящий в состав иммунных комплексов; экспрессируется исключительно на макрофагах и нейтрофилах и опосредует фагоцитоз и антителозависимую цитотоксичность;

2) низкоаффинный рецептор для IgG - FcyRII (CD32);

3) FcyRIII (CD16), который связывает IgG только в составе иммунных комплексов и экспрессируется макрофагами, нейтрофилами, тучными клетками и естественными киллерами.

Некоторые FcyR обладают повышенным сродством к отдельным подклассам IgG (IgGp IgG2a, IgG3, IgG4). FcR могут связываться и с иммуноглобулинами других изотипов (М, А, Е). В частности, связывание с IgM особенно характерно для перитонеальных макрофагов крыс, IgA - моноцитов человека и IgE - альвеолярных и перитонеальных макрофагов крыс, моноцитов человека. Низкоаффинный Fc-рецептор связывается с IgE (FceR), что сопровождается усилением транскрипции генов TNFa и IL-ip с резким усилением продукции этих цитокинов макрофагами.

FcRI могут экспрессировать как покоящиеся макрофаги, так и активированные IFNy. Практически все антигенпрезентирующие клетки, включая и макрофаги, способны экспрессировать высокий уровень FcRI параллельно с экспрессией антигенов II класса главного комплекса гистосовместимости (ГКГ) , CD40, CD88. Новый взгляд на антигенпрезентирующие клетки позволяет рассматривать FcRI как связующее звено между врожденным и адоптивным иммунитетом в результате поглощения иммунных комплексов, что в последующем имеет значение для индукции Т-зависимого ответа.

Одной из важных характеристик FcR, обеспечивающих их быструю реакцию на различные воздействия, является способность к перераспределению на мембране и взаимодействию с в2-интегринами (молекулярные основы этого взаимодействия остаются неизвестными).

Наряду с Fc-рецепторами, участвующими в активации макрофагов, описан еще один - FcRIIb - уникальный ингибиторный рецептор, который ингибирует внутриклеточные сигналы при взаимодействии с иммунными комплексами, содержащими IgG.

Благодаря изучению этого рецептора получены новые и очень важные данные, согласно которым антиген способен взаимодействовать с активационными и ингибиторными Fc-рецепторами как макрофагов костного мозга, так и клеток Лангерганса и дендритных клеток, что способствует усилению Т-клеточной пролиферации и индукции гуморального иммунитета.

Эти данные свидетельствуют о том, что FcRIIb, несмотря на то что он является инги-биторным рецептором, способен осуществлять и позитивную регуляцию презентацией иммунных комплексов, в состав которых входит IgG, что уже сегодня подтверждено при исследовании дендритных клеток.

Только мононуклеарные фагоциты экспрессируют трансмембранный белок CD163, который является членом семейства рецепторов-скавенджеров (рецепторы-мусорщики - scavenger receptor family), и его экспрессия регулируется антивоспалительными медиаторами.

Интерес к изучению роли этого рецептора в последнее время возрастает в связи с доказательствами его участия в различных патологических процессах и его способностью связываться с системой гаптоглобина-гемоглобина (Hb-Hp), что вызывало активацию продукции IL-10 и ингибировалось анти-СD163-антителами. Имеющиеся по этому вопросу данные с полным основанием рассматриваются как идентификация нового пути защитного противовоспалительного эффекта моноцитами и макрофагами человека.

Как отмечалось, естественные киллеры и активированные цитотоксические лимфоциты (ЦТЛ) экспрессируют рецепторы NKG2D. Макрогфаги также экспрессируют этот рецептор, который способен распознавать некоторые поверхностные лиганды, связанные с антигенами I класса ГКГ.

Такие лиганды активно экспрессируются клетками при ряде патологических процессов, а также опухолевыми клетками, и связывание с ними сопровождается активацией макрофагов; не исключено, что экспрессия NKG2D и их перераспределение на поверхности клеток играет роль в нерестрикти-рованном (естественном) лизисе.

Мононуклеарные фагоциты экспрессируют также: антигены I и II классов главного комплекса гистосовместимости; МАС-1; la-антигены; различные адгезивные молекулы (LFA-1, LFA-3, ICAM-1, ICAM-2, интегрины и др.); рецепторы для компонентов комплемента (CR1, CR3, CR4, CR5, CD35, CD88 и др.); рецепторы для цитокинов (IL-1 - CDwl25, TNF - CD120a/b, IFNy - CDwll9); рецепторы для хемокинов (СС1, СС2, ССЗ, СС4, СС5, СС6, СС7, СС8), которые связываются с различными хемоаттрактантами (MIP-1, MIP-la, МIР-1р, МСР, RANTES и др.); маннозные, маннозофруктозные или лектиноподобные рецепторные молекулы, а также рецепторы для фибронектина. Поверхность макрофагов имеет и TOLL-подобные рецепторы - TLR-2 и TLR-4, с участием которых осуществляются защитный эффект макрофагов и апоптоз макрофагов, нагруженных бактериями.

Наряду с экспрессией классических антигенов I и II классов ГКГ при активации макрофагов экспрессируются антигены HLA-G. Их экспрессия обнаружена на клетках, инфильтрирующих карциному легкого, и в значительно меньшей степени - при незлокачественных заболеваниях легких.

Предполагается, что при экспрессии HLA-G может нарушаться презентация антигена, что приводит к ослаблению иммунологического ответа и таким образом благоприятствует развитию как злокачественного, так и воспалительного процесса.

На поверхности макрофагов экспрессируются рецепторы и для различных гормонов (инсулина, тиреотропина, р-адренергических, эстрогенов, глюкокортикоидов, соматостатина, гонадотропина и др.), что делает возможным их участие во взаимодействии с нервной и эндокринной системами, а также в репродуктивных процессах. Так, эстрогены проявляют защитный эффект против нейродегенерации при острых и хронических повреждениях мозга, и именно макрофаги головного мозга принимают участие в эффектах 17b-эстрадиола (Е2) на нейроны.

Наряду с этим данные, полученные в последнее время, показывают, что макрофаги и моноциты участвуют в патогенезе различных нейровоспалительных процессов (множественный склероз, болезнь Альцгеймера, церебральная ишемия), что связано с выделением ими различных цитокинов, металлопротеиназ, экспрессией CD40 и связыванием его со своим лигандом CD40L.

Макрофаги экспрессируют ко-стимулирующие молекулы (CD80, CD86 и др.), что, как правило, сочетается с индукцией ответа Тh2-лимфоцитов. Аналогичные ко-стимулирующие молекулы экспрессируют и клетки Купфера.

Характерным для мононуклеарных фагоцитов является и экспрессия рецептора для трансферина, который активно связывается с трансферином сыворотки крови (участок связывания находится внутри макрофагов). Предполагается, что появление этого рецептора соответствует стадии активации макрофагов и характерным для активации изменениям мембраны.

В функционировании макрофагов существенную роль играет и гистамин, рецепторы для которого экспрессируют мононуклеарные фагоциты. В этом аспекте наиболее изучены моноциты периферической крови, которые гетерогенны по способности экспрессировать указанные рецепторы.

Исследование макрофагоподобных клеток линии Р38821 показало, что добавление гистамина в культуральную среду увеличивает количество внутриклеточного кальция и циклического гуанозинмонофосфата (цГМФ) . Эти эффекты реализуются через H1-рецепторы - доказательство того, что именно через эти рецепторы осуществляется модуляция некоторых биологических функций макрофагов, а Са2+ и цГМФ выполняют при этом роль вторичных мессенджеров.

Гистамин, а также серотонин активируют альвеолярные и пери-тонеальные макрофаги. Совсем недавно было показано, что макрофаги поглощают гистамин и таким образом включаются в нейтрализацию его отрицательных эффектов в очагах воспаления. Гистамин вместе с ПГЕ-2 (вазапростан) и катехоламинами регулирует врожденный и приобретенный иммунитет, усиливая взаимодействие между моноцитами и другими клетками.

Функции макрофагов

В реализации ряда функций макрофагов большую роль играют и рецепторы к лактоферину - железосвязывающему белку, который присутствует в различных секретах и наряду с бактерицидными свойствами обладает иммуномодулирующими эффектами, угнетая продукцию IL-2, IL-1, TNFa, усиливая цитотоксичность моноцитов и естественных киллеров.

Практически все антигенпрезентирующие клетки имеют рецептор для gp96 - белка теплового шока. Этот рецептор - а2-макроглобулин (CD91) - располагается интрацеллюлярно и выделяется только при некротической, но не апоптической смерти, что предполагает его участие как сенсора некротической клеточной смерти.

На макрофагах печени идентифицирован рецептор М-4, который является рецептором для раково-эмбриональных антигенов. Установлено, что на клетках рака кишечника MIP101 также экспрессируется этот рецептор, который существует в различных изоформах и регулируется тканеспецифически.

Далее, макрофаги и моноциты экспрессируют рецептор к меланокортину (MC-1R) и в результате взаимодействия этого рецептора с меланоцитстимулирующим гормоном, который функционирует как медиатор иммунитета и воспаления, снижается продукция IL-1, IL-2, IL-6, IL-13, IL-24, TNFa, IFNy и повышается IL-10.

По количеству продуктов, синтезируемых и выделяемых макрофагами, они занимают одно из ведущих мест по сравнению с другими клетками системы иммунитета, и их конкурентами могут быть только тучные клетки и нейтрофилы.

Мононуклеарные фагоциты экспрессируют Fas и FasL, что может вызывать спонтанный апоптоз, осуществляемый как аутокринным, так и паракринным путем. При активации моноциты быстро выделяют растворимую форму FasL, что свидетельствует об их способности реагировать на изменение окружающей среды.

Экспрессия Fas и связывание с FasL мононуклеарными фагоцитами индуцирует активационные сигналы, в результате чего как моноциты, так и макрофаги выделяют TNFa и IL-8, а культуральная среда этих клеток содержит факторы, стимулирующие миграцию нейтрофилов.

Однако в процессах, индуцированных Fas-лигацией, в моноцитах и макрофагах наблюдаются некоторые различия. Эти различия проявляются в том, что продукция указанных цитокинов моноцитами сопровождается последующим апоптозом и блокируется ингибитором каспаз, а цитокиновый ответ макрофагов происходит в отсутствие апоптоза и является каспазонезависимым.

Эти данные достаточно демонстративно показывают, что Fas-лигация моноцитами может индуцировать провоспалительный ответ, что приводит к острому воспалению и тканевому повреждению. Такой провоспалительный ответ проявляют и преапопто-тические нейтрофилы, что предполагает ряд общих проявлений Fas-лигации различными фагоцитирующими клетками.

Макрофаги продуцируют IL-1, IL-6, IL-8, IL-12, IL-18, TNFa, IFNa, IFNp, МСР-1, TGFP, фактор роста фибробластов (FGF) , тромбоцитозависимый ростовой фактор (PDGF) и др. Недавно было установлено, что макрофаги продуцируют MIF (macrophage migration inhibitory factor) - цитокин, который впервые был идентифицирован как Т-клеточный цитокин; MIF рассматривается как активный кандидат в провоспалительные цитокины, включающийся в гормональную регуляцию и воспаление.

Н аряду с указанными, а также другими цитокинами макрофаги содержат и при определенных условиях могут выделять:

1) лизосомальные ферменты (протеиназы, дезоксирибонуклеазы, липазы, лизоцим, коллагеназу, эластазу, миелопероксидазу и др.);
2) кислородные радикалы (Н2O2, супероксид, нитрооксид и др.);
3) гормоны (антидиуретический гормон (АДКГ) , тимозин, андрофин);
4) компоненты комплемента (C1, С2, С3, С4, С5); а также витамин D3, простагландины, лейкотриены, факторы В и D, пропердин, фибронектин, хондриотин сульфат, трансферин, авидин, амилопротеин Е и др.

Важное значение в понимании особенностей функционирования макрофагов имеют появившиеся новые данные о том, что в регуляции усиления дифференцировки макрофагов принимает участие ген, контролирующий р53; наличие мутаций в указанном гене лишает его такой способности. Этот факт представляет особый интерес при развитии злокачественных новообразований, для которых характерно появление мутаций в гене р53, что лишает его возможности усиливать дифференцировку макрофагов.

Обсуждая значение макрофагов в поддержании иммунологического и тканевого гомеостаза, нельзя обойти вниманием еще один и, как представляется, очень важный вопрос. Речь идет о том, что макрофаги обладают способностью к дифференцированному распознаванию и фагоцитированию апоптотических телец и некротических частиц.

Несмотря на то что этой способностью обладают и некоторые другие клетки, у макрофагов она выражена наиболее сильно. Это направление исследований активно разрабатывается V. Fadok и соавторами, в результате чего в настоящее время стали известны механизмы и условия фагоцитирования апоптотических телец. Макрофаги появляются и распознают апоптотические тельца, используя различные механизмы, включая интегрины, фосфатидилсерин (PS)-3, лектины и др.

Моноцитозависимые и альвеолярные макрофаги человека, костномозговые макрофаги мышей распознают и фагоцитируют апоптотические тельца через систему интегрина vb3, которая на макрофагах человека ассоциируется с CD36 - SR-B суперсемейство рецепторов-скавенджеров; его лиганды: коллаген I, IV, V, тромбоспондин, фосфолипиды, длинная цепь жирных кислот.

Клонирован ген, который кодирует этот рецептор, и показано, что в течение апоптоза макрофагами наблюдается асимметрия в расположении мембранных фосфолипидов, что особенно выражено тогда, когда макрофаги экспрессируют фосфатидилсерин.

При изучении альвеолярных макрофагов было установлено, что экспрессия рецептора-скавенджера и CD14 регулируется IL-6 и IL-10. Однако при этом отмечается различный характер регуляторных влияний этих цитокинов на указанные рецепторы: IL-6 усиливает экспрессию CD14 и подавляет экспрессию мРНК рецептора-скавенджера; в отличие от этого IL-10 снижает экспрессию CD14 и увеличивает экспрессию рецептора-скавенджера (все эффекты дозозависимы и определяются временем культивирования).

Моноцитозависимые макрофаги человека при фагоцитировании апоптотических телец используют CD14 - рецептор липополисахарида, функция которого в полной мере не выяснена.

Процесс связывания и фагоцитирования апоптотических телец сопровождается противовоспалительным действием, что происходит с участием аутокринных и/или паракринных механизмов, которые включают TGF|3, ПГЕ-2 и фактор активации тромбоцитов (PAF). При фагоцитозе апоптотических телец макрофагами человека ингибируется продукция IL-4, IL-8, IL-10, GM-CSF, TNFa, лейкотриена С-4, тромбоксана В-2; параллельно с этим увеличивается продукция TGFpi, ПГЕ-2 и PAF.

Следует подчеркнуть, что многие рецепторы, необходимые для распознавания апоптотических телец, имеют очень важное значение и для врожденного иммунитета. Эти рецепторы включают интегрины, рецепторы-скавенджеры классов А и В, лектиноподобный рецептор LOX1 (lectinlike oxidized), некоторые рецепторы для комплемента и CD14.

Несколько неожиданно, а возможно, даже парадоксально, что когда эти рецепторы связываются с микроорганизмами или их продуктами, то во многих случаях развивается провоспалительная реакция и наблюдается стимуляция приобретенного иммунитета. В отличие от этого поглощение апоптотических телец не связано с воспалением, при этом приобретенный иммунитет не активируется. В связи с этим следует объяснить такую диаметральную противоположность процессов, которые происходят при активации одних и тех же рецепторов.

Эти данные независимо от того, какая интерпретация будет дана им в будущем, являются в высшей степени важными и интересными, так как раскрывают неизвестные ранее формы участия макрофагов в воспалении и приобретенном иммунитете.

Далее, в опытах, проведенных на костномозговых макрофагах, было показано, что после поглощения некротических нейтрофилов они стимулировали пролиферацию Т-лимфоцитов in vitro, увеличивали экспрессию CD40 и такие макрофаги содержали высокий уровень TGFP, но низкий TNFa; аналогичных эффектов при фагоцитировании апоптотических нейтрофилов не наблюдали.

Высокий уровень содержания TGFP в макрофагах при фагоцитировании апоптотических телец рассматривается как защита от провоспалительных цитокинов, этот процесс происходит при участии р38, митогенактивирующей киназы (МАРС) и NF-kappaB.

Накопленные данные свидетельствуют о том, что поглощение и переваривание некротических или лизированных клеток индуцируют иммунологический ответ и воспаление, чего не происходит при фагоцитировании апоптотических телец.

В связи с этим очень правомочен вопрос, который ставят V. Fadok и соавторы в названии одной из своих статей: "Может ли фосфатидилсериновый рецептор быть молекулярным переключателем, который устанавливает, кто должен уйти?". Поставленный вопрос не лишен дискуссионной направленности и предполагает не только сложность ответа, но и тот трудный путь, который нужно пройти для его получения.

Глубокий биологический смысл феномена, который заключается в особенностях фагоцитирования некротических и апоптотических клеток, очевиден. Нарушение механизмов очищения организма путем апоптоза может быть причиной перехода острого воспаления в хронические воспалительные заболевания, включая и аутоиммунную патологию.

К сожалению, этот в высшей степени интересный вопрос еще очень мало изучен при опухолевом процессе. Имеющиеся работы единичны. В качестве примера можно привести данные о фагоцитозе апоптотических клеток линии НТ-29 карциномы толстой кишки человека.

Эти исследования показывают, что экспрессия молекул фосфатидилсерина и углеводных цепей изменяется в зависимости от стадии фагоцитоза: экспрессия галактозы была в равной степени важна для всех стадий апоптоза, экспрессия фосфатидилсерина - на последующих и поздних стадиях.

Изучение этого вопроса при опухолевом процессе может представить интерес по различным соображениям. Вполне реально предположить, что, с одной стороны, поглощение апоптотических телец при определенных условиях может создать резервуар опухолевых антигенов в макрофагах с последующей их презентацией, с другой - фагоцитирование некротизированных опухолевых клеток может быть одной из причин супрессирующих влияний макрофагов на клетки системы иммунитета.

Наконец, нельзя не согласиться с предположением, что выделение макрофагами супрессирующих цитокинов при фагоцитировании лизированных опухолевых клеток может быть одной из причин ухода опухоли из-под иммунологического контроля.

Обсуждая вопрос о фагоцитировании макрофагами апоптотических и некротических телец, следует также отметить, что макрофаги , экспрессирующие FasL, способны фагоцитировать апоптотические опухолевые клетки, не экспрессирующие указанный антиген.

Бережная Н.М., Чехун В.Ф.